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Direct Behaviour Prediction from Miniscope Calcium Imaging 

Using Convolutional Neural Networks 

 

Abstract 
 

 

Background: Neurodegenerative diseases, including Parkinson's, continue to affect millions worldwide, 

driving neuroscience research to develop effective and personalised treatments. To study and understand 

the neural circuits in the human brain associated with the emergence and progression of these diseases, 

researchers are using neuroimaging techniques like calcium Imaging in disease-relevant animal models to 

link an organism's neural activity with its behaviour. 

Aim:  Calcium imaging techniques present various limitations for researchers, such as complex-to-

use pipelines often limited to extracting cell body information without directly inferring any behavioural 

correlates. This thesis investigates the potential application of advanced deep learning techniques, such as 

convolutional neural networks, in improving calcium imaging analysis by reducing pre-processing 

requirements and directly arriving at behavioural correlations from animal neural activity. 

Methods: In this study, previously collected calcium imaging datasets from behavioural assays of freely 

moving animals are repurposed and used to train a CNN-based tool called the BPNN (Behavioural 

Prediction Neural Network). Additionally, the performance of the BPNN is compared and evaluated with 

current state-of-the-art methods applied in neuroscience research. 

Results: Several experiments were performed to evaluate the BPNN's capacity to predict behaviour 

compared to current methods. However, issues related to overfitting arose, which may have been caused by 

technical discrepancies or other biological artefacts produced during the calcium imaging recordings 

sessions. Despite this, the BPNN produced similar or better results in predicting animal behaviour, with an 

F1-score of 0.56 compared to the F1-score of 0.41 of an existing calcium imaging analysis tool concerning 

the same biological task.  

Conclusion: The best-performing configuration of the BPNN model demonstrated a limited yet plausible 

ability to establish links between neural activity and specific animal behaviours, indicating the potential 

applicability of CNNs in behaviour prediction assignments. However, further research is required to 

address current technical and biological limitations to reaffirm the postulations of this study. 
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1 Introduction  

One of the biggest challenges in healthcare today is finding effective treatments for 

diseases that continue to affect millions of people worldwide. In neuroscience, 

researchers focus on understanding how the brain functions and affects behaviour in 

living organisms. They are doing this by mapping behaviour with neural activity in 

disease-relevant animal models during behavioural assays allowing them to study the 

brain in greater detail and develop potential therapies or diagnostic mechanisms. 

In addition, recent advances in computer science are helping researchers analyse 

large-scale neuronal information using machine learning. The combination of brain 

research and machine learning push the boundaries of our understanding of the human 

brain with unprecedented potential and enables the development of new diagnosis tools 

and personalised therapies for neurodegenerative disorders, namely Parkinson's and 

Huntington's disease. 

This thesis attempts to analyse neuronal activity captured during behavioural 

paradigms of mice by utilising the latest advancements in deep learning (DL), like 

convolutional neural networks (CNNs), to examine the extent to which direct animal 

behaviour prediction from neuro-imaging recordings is possible without following the 

standard and labour-intensive pre-processing steps of current state-of-the-art tools. 

1.1 Motivation 

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disease of 

unknown cause, characterised by a degeneration of dopamine-producing neurons in the 

substantia nigra compact (SNc), a region in the basal ganglia (BG) that affects movement 

control, emotional regulation, and habit formation (1). PD was first clinically described by 

James Parkinson in 1817 (2) in the following terms: 

“Involuntary tremulous motion, with lessened muscular power, in parts not in action and 

even when supported; with a propensity to bend the trunk forward, and to pass from a 

walking to a running pace: the senses and intellects being” (2). See Fig. 8.1 for PD 

illustration. 

 Tremendous progress was made in Parkinson's disease research during the second 

half of the 20th century. One of the most significant milestones occurred in the late 1950s  

through the mid-1960s when researchers discovered that decreased concentrations of the 

dopamine neurotransmitter in the SNc were prevalent in PD patients (3,4). This discovery 

led to the development of the first clinical trials of levodopa (L-DOPA), a drug that 



 

2 

 

increases dopamine levels in the brain and helps alleviate PD symptoms, namely tremors, 

rigidity, and bradykinesia (5). 

Today, PD is the second most common neurodegenerative disorder globally, 

affecting over 10 million people and one of the leading causes of motor impairment (6). In 

addition, recent studies argue that PD cases in the future will increase, potentially placing 

additional strain on the healthcare system (7). Despite extensive research efforts aimed at 

identifying the cause of PD and developing a cure, the underlying aetiology of the disease 

remains elusive (8). Moreover, the clinical diagnosis of PD is based on the presence of the 

disease’s main motor symptoms; hence, finding biomarkers to identify PD in the 

prodromal stage (the disease stage before the emergence of motor symptoms) may enable 

personalised dopamine replacement therapies to initiate earlier (8–10) thus improving the 

patient’s quality of life during the progression of the disease. 

 The prodromal or preclinical stage of PD is characterised by the onset of non-motor 

symptoms such as REM-sleep behaviour disorder, constipation, and hyposmia (11). To 

discover the underlying mechanisms of non-motor dysfunction in PD in the prodromal 

stage, animal models are developed to mimic the presence of the disease, monitor how it 

develops over time, and perform a variety of behavioural experiments to explore the role 

of specific neural circuits and their connection to PD (12). More specifically, neural circuits 

in the brain that regulate movement or cognitive behaviour, like the basal ganglia, are 

studied to investigate their role in shaping motor and cognitive behaviour within the context 

of PD (1). To visualise and interpret the activity of these neuron populations during 

behavioural experiments with mice, neuro-imaging techniques such as in-vivo calcium 

imaging are adopted. Calcium imaging (CI) works by mounting a miniature microscope, 

known as a miniscope, inside the mouse’s brain to record fluorescence changes in cell 

activity while the mouse engages in behavioural tasks (13). After the experiment recording, 

a video depicting cell activity is analysed with calcium imaging analysis pipelines. The aim 

is to extract cell activity traces (or calcium traces) and associate them with the animal 

behaviour observed in the experiment (more on this neuroimaging technique in Sec. 2.1). 

However, as discussed by Pnevmatikakis et al. (14), CI analysis comes with several 

limitations that may hinder research efforts in interpreting relations between neural activity 

and behaviour. Such limitations derive from the miniscope’s low spatial resolution, making 

it difficult to identify neurons, differentiate neurons that may be spatially overlapping, and 

decode neuronal activity from the captured calcium fluorescence (15).  

 Furthermore, as described in a study by Dong Z et al. (16), detecting individual 

neurons from video recordings using calcium trace extractions computationally expensive, 

particularly when large-scale recordings are considered. It requires a series of pre-
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processing steps performed by specialised imaging algorithms for denoising and motion-

correcting the video recordings. Another bottleneck is the number of complicated 

parameters that need to be adjusted before processing, making it challenging for non-expert 

researchers in CI analysis to use these pipelines.  

 Over the recent decades, Artificial Intelligence (AI) has rapidly evolved, driven by 

computer science and advancements in mathematics. One of the key areas in AI is Deep 

Learning (DL), a subfield of Machine Learning (ML) which is concerned with a class of 

algorithms called Artificial Neural Networks (ANNs) modelled after the way nerve cells in 

the human brain process information (17). ANNs use multiple processing layers of 

interconnected nodes, called artificial neurons containing weighted values that allow for 

the transmission and processing of information through a network to perform overly 

complex non-linear computations like image and speech recognition, natural language 

processing, and more (17). As a result, ANNs have found widespread adoption in many 

domains, especially in the medical field, including clinical diagnosis, cancer prediction 

(18), image analysis and interpretation as well as drug development (19), to name a few. 

 Currently, studies have applied ML methods to improve CI analysis. However, the 

emphasis has been placed on improving individual cell segmentation (the process of 

identifying individual neurons) from raw CI recordings instead of mapping them directly 

to behaviour classifications (the process of correlating neural activity to animal behaviour) 

(14,16,20–29). On the other hand, Convolutional Neural Networks (CNNs), a type of deep 

learning algorithm, are particularly suitable for image analysis tasks (30,31) and could 

potentially be utilised to map large-scale CI recordings to behavioural classifications, thus 

assisting researchers in interpreting population-level (multiple neurons) dynamics. 

Moreover, after a CNN model is trained, optimised, and evaluated, neural activity patterns 

can be associated with specific behaviours of the animal, thereby enhancing the capacity 

for animal behaviour prediction without the parameter-intensive and multi-step process of 

current calcium imaging analysis pipelines (14,16,24,25,30). However, it is important to 

note that for a CNN model to produce reliable results, large amounts of data are required 

for training the model and avoiding overfitting (32).  

 One more advantage of using CNNs for this application is that the neuronal 

fluorescence from the recording's entire field of view (FOV) is utilised. Pixel values from 

each video frame encompass important neural information on cells, dendrites, and axons, 

whereas current methods are mostly limited to extracting cell body traces. More 

information extracted from each experiment leads to an ethical advantage compared to 

current methods, as calcium imaging recordings on animals are an invasive procedure that 
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requires a surgical operation on the mouse’s head and consequently the animal’s sacrifice 

when the experiments are concluded.  

 This incremental improvement in extracting neuronal activity during behavioural 

tasks may enhance the potential discovery of new biomarkers that can lead to alternative 

therapies and the timely detection of various brain diseases. 

1.2 Problem Description and Knowledge Gap 

The central aim of systems neuroscience research is to link an organism's neural activity 

with its behaviour (33). Many tools and methods have been developed to enhance our 

understanding of how specific neuronal populations function and relate to observed 

behaviour in experiments. Moore's Law states that computer processing speeds double 

approximately every two years, highlighting the exponential increase in computational 

power (34). Regardless of this increase in power, the amount of data generated from neural 

recordings is continuously growing at a significant rate and may soon reach a scale of 

thousands or even millions of recording channels significantly (35). 

 The study of Trautmann et al. (36) addresses the challenge of the demanding data 

analysis required in a neuronal analysis task called spike sorting by extracting the firing 

rates of single neurons from extracellular recordings (37). Essentially, spike sorting is a 

pattern recognition problem (38) for analysing and classifying the action potentials (or 

electrical signals) generated from neurons in the brain. For interpretations of population-

level neural activity, the authors propose an alternative approach that skips the labour-

intensive pre-processing steps of spike sorting by applying a machine learning technique 

called dimensionality reduction on multiple neurons. This approach has been shown to 

produce comparable results without the computational overhead and complexity of the pre-

processing steps applied in the original method (36). In this spirit, we postulated whether 

a similar application could extract population-level neural activity from the main brain 

circuit of interest for PD, the basal ganglia (39). To study dysfunction in the BG, 

behavioural paradigms of animal models are developed in controlled laboratory settings to 

simulate the presence of PD symptomatology and underlying functional mechanisms. 

However, how can we monitor the activity of neurons in living organisms while they 

participate in these behavioural tests? 

 Calcium imaging is a standard tool of choice for studying neural circuit dysfunctions 

in the BG as it allows for the recording of large neuron populations of interest in vivo (in a 

living organism) and over time (weeks or months) (40). Sec. 2.1 describes in detail how 

calcium imaging is employed for analysing neuronal data.  
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Several implementations of in vivo calcium imaging recordings require ML-based 

methods such as principal component analysis (PCA), independent component analysis 

(ICA), and a constrained non-negative matrix factorisation (CNMF) algorithm, to name a 

few, for reliably extracting neuronal information from behavioural experiments (29). The 

process of extracting neuronal information from calcium imaging recordings is called 

calcium signal or calcium trace extraction (41). It enables the acquisition and analysis of 

neurons based on their intracellular calcium concentration. High calcium concentrations 

indicate that neurons are activated.   

Among the implementations in the field of calcium imaging analysis, there have been 

more approaches (26–28); however, the complexity of using these pipelines remains a 

bottleneck for most research teams. For example, each of the aforementioned algorithms 

requires heavy parameter tuning by trained experts in complicated software environments, 

limiting less-trained neuroscientists in calcium signal extraction from using the tools.   

 Soltanian-Zadeh S et al. (30) implemented a new pipeline that used CNNs to segment 

neurons from calcium imaging recordings by eliminating any manual step in cell 

segmentation as required by other pipelines, although no behaviour prediction is 

conducted. Despite this, the mentioned study is compelling evidence that CNNs have 

potential implementations in calcium imaging analysis tasks. Another interesting approach 

is that of Etter et. al (42), where they use a Bayesian classifier to infer behaviour from 

calcium imaging recordings. However, no neural networks, for instance, CNNs, were 

adopted in this approach. Moreover, it would be interesting to explore, with the recent 

advancements in DL, how neural networks can be harnessed in the task of inferring 

behaviour predictions from CI recordings. 

 In summary, to the best of our knowledge, limited research has been pursued in 

applying CNNs to infer behaviour from calcium imaging recordings. This creates a 

potential knowledge gap in developing a tool that can behaviour correlations among 

behaviour and acquired neural activity without the need for manual pre-processing 

intervention, which is currently common in alternative calcium imaging analysis methods. 

1.3 Aims and Objectives 

The aim of this thesis is to apply CNNs as an alternative method for population-level neural 

activity analysis of calcium imaging recordings, bypassing the current trace extraction 

steps of state-of-the-art methods. The overarching goal is to provide animal behaviour 

interpretations faster, directly, and while extracting more neuronal information than before, 

which may lead to an increased understanding of PD progression, diagnosis, and drug 

development. To reach this aim, the following research objectives were formulated: 
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▪ Pre-processing of raw calcium imaging recordings acquired from a cognitive task 

experiment conducted at the K. Meletis Group. 

▪ Train a CNN model with calcium imaging recordings divided into training and 

validation parts. 

▪ Optimise hyperparameters like the number of batch sizes, epochs, and dropout 

layers. 

▪ Validate the model on new, unseen, before calcium imaging frames. 

▪ Compare the model with current calcium imaging analysis tools. 

1.4 Research Questions 

The following research questions are formulated to address the aim and objectives: 

1) To what extent is direct behaviour prediction in mice possible from in-vivo 

calcium imaging videos by omitting the step of calcium trace extraction and using 

deep learning methods such as CNNs? 

2) To what extent can we maximise the amount of neuronal information acquired 

from calcium imaging recordings to gain a better understanding of neural activity 

in brain circuits of interest? 

1.5 Limitations 

The performance of a CNN model heavily depends on the amount and quality of the data 

used to train it. This study is limited to data obtained from calcium imaging recordings 

from one mice experiment. While recordings were acquired from multiple mice, it would 

be beneficial to validate the model using a collection of different behavioural assays and 

animal models. 

 Moreover, this study focuses on animal behaviour prediction based on the 

population-level activity of neurons obtained from calcium imaging recordings. Unlike 

current state-of-the-art calcium imaging analysis tools, this approach does not perform 

calcium trace extraction (14,16,25) and, as a result, is not ideal for research questions that 

explicitly require single-cell traces (identification of individual cells). 

 An important caveat to be addressed here is that the CNN model can only be trained 

and tested on calcium imaging recordings obtained from the same animal as the neuronal 

formations of each organism are unique, making it difficult to accurately predict behaviour 

across different animals. This raises the risk of overfitting the model, a phenomenon that 

occurs when an ML model is not trained with enough data (43). Despite this, it would be 
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interesting to explore  whether the model can be generalised and perform predictions across 

different animals.  

 Furthermore, this study is undertaken with limited time availability. It is also 

important to note that the author of this study is not a neuroscientist by training, so their 

conclusions may be subject to differing opinions. Nevertheless, this study has been 

supervised by neuroscientists, computational neuroscientists at the K. Meletis Group at the 

Department of Neuroscience, Karolinska Institutet and data scientists from the Department 

of Computer and Systems Science, Stockholm University, who have provided the author 

with guidance and support throughout the development of this thesis.  

1.6 Relevance to Health Informatics 

Health Informatics (HI) is an interprofessional field that examines how technology and 

big data can improve the quality of healthcare (44). In the context of HI, this study 

leverages recent advancements in deep learning, such as CNNs, the deep learning method 

with the most significant impact in HI (45), to develop an alternative calcium imaging 

analysis tool that may potentially be used for aiding medical research in identifying 

biomarkers related to the diagnosis and progression of neurodegenerative diseases such 

as PD. The scope of this study and its possible future extensions may become relevant in 

assisting the development of personalised treatments and interventions beyond 

Parkinson’s disease to various other neurological and psychiatric conditions. 

1.7 Structure of the Thesis 

Chapter 2 presents an array of introductory terminology and scientific concepts necessary 

to comprehend this thesis. The reader is presented with a gentle introduction in calcium 

imaging, machine learning, deep learning, and an overview of related work in the 

research area. In Chapter 3, we outlay the methodology employed during the 

development of this thesis, including the methodology strategy and the technical 

trademarks embodying the proposed analysis tool. In Chapter 4, we render the results of 

the experimental procedures based on the predefined research questions while in Chapter 

5, we discuss the outcomes of our research, including limitations, expectations, and future 

research trajectories. Finally, Chapter 6 provides a summary of the findings. 
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2 Extended Background 

This Chapter provides background information on the relevant discipline areas and 

terminologies discussed in this thesis. Sec 2.1 focuses on explaining the basic concepts of 

calcium imaging. Sec 2.2 and Sec. 2.3 discuss the fields of machine learning, deep 

learning, and the applicability of CNNs in computer vision tasks. Sec. 2.4 provides the 

reader with an overview of the literature search strategy for finding potential knowledge 

gaps and discusses related work of CNNs applied in CI analysis. Lastly, in Sec 2.5, we 

discuss the significance of this thesis work compared to current solutions in calcium 

imaging analysis.  

2.1 Calcium Imaging 

Imaging properties of the brain are of great interest to neuroscientists as it allows for 

studying and understanding brain function. A range of techniques with different serving 

purposes is available for brain imaging, such as electroencephalography (EEG), positron 

emission tomography (PET), magnetic resonance imaging (MRI), and functional 

magnetic resonance imaging (fMRI) (46). However, none of these methods allows for 

monitoring single-cell or population-level neuronal dynamics (46).  

Instead, one-photon and two-photon CI techniques have opened new frontiers for 

exploring deeper areas of the brain. This Section discusses the concept of calcium 

imaging and the common pre-processing steps found in calcium imaging analysis 

pipelines. We aim to give the reader an overview of the latest tools and their limitations, 

highlighting the need for a more effective approach to interpreting neural dynamics at the 

population level.  

 

2.1.1 Calcium Indicators 

How do we image brain activity in living animals? The answer lies in understanding the 

basic functionality of genetically encoded calcium indicators (GCaMP). Calcium 

indicators allow us to capture the neural activity of cell populations of interest in living 

animals that engage in various behaviour tasks over extended periods of time (47), 

however, delving deeply into the biological inner workings of calcium imaging is beyond 

the scope of this thesis. 

Calcium ions (Ca2+) are crucial for regulating neural activity. High intracellular 

calcium concentrations in neurons trigger electrical charges and the release of 

neurotransmitters. This biochemical process can be exploited as a proxy to indicate 

neural activity in animals (48). To image these electrical charges in neuron populations of 

interest under a microscope, protein indicators like GCaMP are injected into a living 
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organism (see Fig. 2.1) and through a process called DNA expression, proteins are 

generated within the cells. When proteins bind to calcium ions, fluorescence is emitted, 

and with the use of a fluorescence microscope, researchers can visualise and track the 

fluorescence (48) or the glowing effect observed in activated neurons. As a result, 

researchers can visualise neuronal dynamics in living organisms and track their 

fluctuations over time during behavioural experiments (49).  

 

2.1.2 Calcium Imaging Analysis Workflows 

Two-photon (2p) calcium imaging is a high-resolution neuroimaging method for 

visualising neural activity in vivo. It captures three-dimensional images of subcellular 

dynamics that can reach 1𝑚𝑚 in brain tissue (50). In comparison, one-photon (1p) 

calcium imaging has depth limitations and a lower resolution compared to 2p methods. 

However, 1p calcium imaging has the luxury of monitoring calcium dynamics in freely 

moving animals, while 2p approaches can only accommodate behavioural tasks where the 

animal’s head is in a fixated position. In addition, 2p techniques, due to the nature of the 

head fixation requirement, have been reported to induce stress in animals and limit the 

variability of naturalistic experiments that can be conducted to study behavioural 

paradigms (51). 

Although 1p CI may be more suitable for specific behaviour tasks, analysing CI 

data presents significant challenges that haven’t been thoroughly addressed today. For 

example, the ever-growing amount of neuronal information generated from experiments 

makes it cumbersome, computationally expensive, and time-consuming for researchers to 

analyse. New analysis methods that can be operated reasonably fast and conveniently on 

regular computers instead of specialized high-performance equipment are needed (52). 

Alternative methods have been recently developed to compensate for these challenges 

with end-to-end open-source pipelines for CI analysis (14,16,25,53). 

In Fig. 2.2, we illustrate a general overview of the main pre-processing steps 

undertaken in a CI analysis pipeline. Typically, motion correction is applied to minimise 

motion artefacts induced in recordings due to animal movement. Following this step, 

manual annotation from a trained expert or an algorithm is utilised for extracting 

spatiotemporal information of cell fluorescence traces and demixing possibly overlapping 

cells. The last step of CI analysis involves the deconvolution of the captured fluorescence 

traces of calcium signal activity (52). Steps 3 and 4, as portrayed in the Figure, involve 

the step of calcium trace extraction described in Sec. 1.2. 
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Figure 2.1 | Calcium imaging with 1p miniscopes in transgenic mice. 

Note | The process of acquiring neural activity with a calcium imaging technique: 

A. An AAV DIO GCaMP8 virus is injected into a transgenic Cre driver mouse for expressing the GCaMP8 

fluorescent indicator.  

B. A mouse with an integrated miniscope for recording neuronal activity from neurons expressing the GCaMP 

protein.  

C. Field of view (FOV) from a miniscope recording showing activated neurons.  

 

 
Figure 2.2 | A typical calcium imaging analysis pipeline. 

Note | Adapted from Giovannucci et al., 2019 (52) 

 

2.1.3 Recording Neural Activity in Behavioural Assays 

Animal models are typically developed to simulate disease presence and compared to 

control animal groups to make plausible cause-and-effect correlations. They are 

appropriately conditioned for the corresponding behavioural experiment and recorded 

with neuroimaging techniques like calcium imaging to investigate factors that govern 

their behaviour under specific research requirements. This Section presents the Arrow 

Maze task from which calcium imaging recordings were retrieved to train the CNN tool, 

introduced in Chapter 3.  

 

2.1.3.1 The “Arrow Maze” Task 

In this thesis, we trained a CNN model using calcium imaging data collected from the 

Arrow Maze behavioural experiment. Throughout this experiment, water-restricted mice 

are recorded with one-photon (1p) CI. As described in Sec 2.1.1 and 2.1.2, a miniaturised 

microscope (i.e., “miniscope”) is mounted to the mouse’s head, allowing for the 

recording of fluorescence fluctuations for the duration of the task (see Fig. 2.1).  Once the 
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mice are prepared for the task, they’re introduced into a maze of three corridors with 

waterspouts from which they receive water as a reward (illustrated in Fig. 2.3).  

With this behavioural task, the goal is to monitor the activity of neuronal populations 

of interest in the basal ganglia and investigate their role in goal-directed behaviour and 

decision-making.  

 

 
Figure 2.3 | Schematic of the Arrow Maze task.  

Note | The experiment is parted into two stages as described in Weglage, 2022 (66): 

▪ Side A reward from days 1-11: The mice must travel back and forth from the initiation spout located in the 

base of the main corridor to Spout A to obtain their reward. If Spout B was approached instead, no reward is 

attributed. 

▪ Side B reward from days 12-15 (Reversal): The mice must travel from the initiation spout located in the 

base of the main corridor to Spout B to obtain their reward. If Spout A was approached instead, no reward 

has attributed. 

▪ The duration of each experimental session (one per day for a total of 15 days) is about 20 minutes long. 

The output of this experiment is a large amount of mouse behavioural data such as 

turning, running, stopping, rearing, and grooming. Also, tracking data of X and Y 

location coordinates are collected, as well as the calcium imaging recordings derived 

from the miniscope during the experiment. 

 

2.1.3.2 Producing Behaviour Correlations from Calcium Imaging Recordings 

In the previous section, we discussed how we could observe neural activity in mice 

during behavioural assays. The next challenge is to conduct behaviour correlations based 

on the recorded neural activity. In this thesis, we have leveraged behavioural labels 

generated from the Arrow Maze sessions, used to annotate the calcium imaging frames. 

The methods to generate these labels are as follows:  

1. Tracking the mouse body (e.g., the base of the tail, and the head) using the 

DeepLabCut (DLC), a behavioural tracking tool for markerless pose estimation 

based on a transfer learning approach and deep neural networks (54). 
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2. Filtering the tracking data from the DLC using a particle filter algorithm ensures 

it is smooth and corrects outliers from tracking failures.  

3. Use a Hidden Markov Model (55) with hand-coded transition and emission 

likelihoods to match the arrow-maze task's behavioural stages. 

In Sec. 3.3.1, we explain how we use the behaviour labels obtained from this experiment, 

pre-process them and feed them as input to train the CNN model for making behavioural 

correlations of the mouse during task engagement. To understand this better, it is 

important to provide some background on deep learning and how convolutional neural 

networks can simplify pre-processing requirements in calcium imaging analysis, enabling 

us to perform behavioural correlations. 

2.2 Machine Learning 

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) and involves the 

development of algorithms or statistical models that are particularly successful in 

learning from raw data by extracting patterns or features to make predictions on new, 

unseen data (31). One of the numerous examples of ML algorithms is logistic 

regression, which can be used to predict whether a customer chooses to buy a particular 

product or not (31). Another example of a simple ML algorithm is naives Bayes, which 

can separate email into spam or not spam categories (56). Nowadays, ML algorithms are 

harnessed in various areas of society, such as web searches, content recommendations, in 

software for cameras as well as smartphones. (57). Many ML algorithms have different 

use cases depending on the problem they are meant to solve. However, ML algorithms 

are mainly categorised into these three distinct categories: unsupervised learning, 

reinforcement learning, and supervised learning.  

Unsupervised learning (UL) algorithms are good at finding patterns and structures 

from raw input data without predefined labels or annotations by humans (56). For 

example, some unsupervised learning algorithms can group similar data points together, 

discovering underlying structures or patterns in the data, such as clusters (58).  

Another form of deep learning is reinforcement learning (RL), which involves an 

algorithm that can learn from trial-and-error interactions with an environment without 

any intervention from an external operator (56). In reinforcement learning, the goal is to 

learn a policy that maximises the cumulative reward over time by selecting the best 

action at each step. The model must determine which actions to take and test over time to 

evaluate its performance (59). 

Continuing, one of the most common forms of machine learning algorithms 

is supervised learning (SL), which involves training a model on a large set of similar 
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data, such as images or text, where each training example is paired with a label or target. 

For example, a frame portraying a number of fluorescent neurons in a calcium imaging 

video consisting of an 𝑿 number of frames can be associated with a vector of a 

numerically defined mouse behaviour label 𝒚 such as moving forward, turning left, 

turning right, with 𝒚𝒊 being the label corresponding to a training example of an image 𝒊 

in the set of frames X (see Fig. 3.1 for an example of a CI frame). During training, the 

model learns to classify the images in the dataset according to their corresponding labels. 

A loss function measures the computation error between the predicted and actual labels, 

indicating how successful the model is in correctly classifying the image. Therefore, 

based on this likelihood, the model adjusts its parameters or weights accordingly to 

reduce the output error as much as possible. After the training is completed, the model is 

validated on new, unseen data to define how well it generalises (60). 

 

2.2.1 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) are a classification technique based on the statistical 

learning theory. In SVMs, a hyperplane divides the dataset into different classes by 

separating the data points with the maximum possible distance between them to minimise 

the risk of incorrect classifications of training and test examples (61). In Fig. 2.4, we can 

observe how the hyperplane separates the data points into two different classes. Even 

though SVMs minimise the risk of overfitting and require fewer training examples for 

class classifications, they are still considered a black box model as they do not reveal 

which training examples were used to learn for making predictions (61).  

In this thesis, an SVM-based model is implemented to make behaviour predictions 

from extracted cell traces of calcium imaging videos to mimic the current processes in 

calcium imaging analysis, such as the one exemplified in Fig. 2.2. The goal of utilising 

the SVM model is to compare it with the proposed CNN tool in this thesis.  

 

 
Figure 2.4 | A visualisation of an optimal hyperplane with an SVM algorithm. 
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2.3 Deep Learning 

In the previous sections, we discussed ML and its distinct categories: unsupervised, 

reinforcement, and supervised learning. We also provided an overview of supervised 

learning algorithms, such as support vector machines, which are mentioned throughout 

this work. These ML algorithms have found applications in many areas of modern 

society, such as web searches, content filtering, personalised advertising, and more (60). 

More advanced ML systems can perform computer vision tasks like object recognition 

and image-to-text subscription. However, their ability to process raw data could be 

improved, as they require elaborate feature engineering to extract meaningful data from 

which ML models could train to make reliable predictions. For example, developing a 

model trained on the pixel values of an image requires creating an accustomed feature 

extractor that transforms the original data into useful representations from which the 

classifier can detect patterns. This bottleneck in conventional machine learning is called a 

representation learning problem (60). 

Deep learning is a subfield of ML that utilises multiple-layer neural networks. It has 

gained popularity over the past decade for its ability to process and extract patterns from 

raw, high-dimensional data to solve previously challenging tasks. While traditional 

machine learning algorithms help identify patterns or objects in images, speech, or 

recommendation systems, they often require careful feature engineering and are 

challenged when extracting relevant features from raw data (62). For example, a deep 

learning model usually consists of multiple non-linear modules where each transforms 

the representation from raw input to a more complex representation, making it easier for 

the classifier to discriminate variations in the input data (60). In Fig. 2.7 we demonstrate 

a classic example of how an image is fed into a DL model as an array of pixel values and 

how the extracted features from the first layer led to further feature extractions from the 

next layer.  

 

2.3.1 Artificial Neural Networks (ANNs) 

In deep learning, artificial neural networks (ANNs or NNs) are a type of computational 

model inspired by the biological neural networks of the human brain (31). An ANN is a 

network-like structure composed of several layers (an input layer, hidden layers, and an 

output layer) of interconnected processing units called neurons or nodes. These neurons 

are connected to other neurons in the network with a specific weight value and perform 

computations to identify patterns in the input data, usually a set of images. During the 

training phase, the connections, or synapses, between the neurons are modulated by these 

weight values and adjusted based on the difference between the model's predicted and 

actual output (error signal). This process is called backpropagation (see Fig. 2.5) and 
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increases the model’s performance for a given task, such as identifying a particular object 

like a cat or a dog, by propagating backwards the error signal through the network to 

adjust the weights (31). 

 

 
Figure 2.5 | Information propagating through the layers of a Neural Network. 

Note | Adapted from (76). The process of information propagation in a Neural Network: 

1. A batch of training data is forward propagated to compute the error signal. 

2. The error signal is backpropagated through the network. 

3. The weights of the nodes are updated with respect to the error signal.  

 

2.3.1.1 Training a Neural Network 

Non-linear transformations of non-linearities in the data help the model discover 

relationships between the inputs and outputs of the neurons in the network. The process 

of these non-linear transformations is a mathematical function called an activation 

function (31). A popular example used in CNNs is the rectified linear unit (ReLU) (see 

Fig. 2.6) that is mathematically represented as f(z)  =  max(0, z) (31) where 𝒛 is the 

input data for the ReLU function. More precisely, when a value above 𝟎 is passed into 

the ReLU function, it remains the same; otherwise, if it is negative, it is converted to 𝟎, 

making it easier for the network to identify and extract patterns from the data. 

Afterwards, this output is fed as input to the neurons in the following network layer, and 

the process is repeated (31).  

 

 
Figure 2.6 | Schematic of a ReLU function. 
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Other common activation functions include sigmoid and softmax. In brief, the 

sigmoid activation is typically used in binary classification tasks and maps the input data 

𝒛 to an output value between 𝟎 and 𝟏  (31). The softmax activation function is mainly 

used at the output layer of the neural network for multi-class classification tasks to 

represent the prediction probability of an 𝒏 number of classes (31).  

Before the training phase is initiated, the input data is partitioned into training and 

validation sets. The training set is usually larger than the validation set (for example, split 

to 80% training - 20% validation sets). During the training phase, the network’s weights 

are adjusted to minimise the difference between the predicted and actual output using an 

optimisation algorithm called gradient descent (63).  

Once the model is trained on the training set, its performance is evaluated on the 

validation set by checking how well it makes correct predictions from unseen data. 

However, this 80-20 splitting arrangement, the model may have limited validation data 

points to learn from, which may result in poor model performance due to a phenomenon 

called overfitting. Overfitting occurs when the difference between the training error in the 

training dataset and the validation error in the validation dataset is significant. For 

example, the model becomes too good at learning from the training data but struggles to 

learn from the validation data (31). On the contrary, underfitting, is the phenomenon 

where the model lacks the capacity to learn from the training data (64).  

Early stopping is a technique used to decrease the difference between the training 

and validation errors by stopping the optimisation algorithm when the validation error has 

not improved after a certain amount of time (31). In addition, a dataset-splitting technique 

called cross-validation (or k-fold cross-validation) can also be applied to improve 

performance. Here, 𝒌 is the number of non-overlapping subsets (or folds) of the input 

data 𝒛 and 𝒌 − 𝟏 folds are used for training the model, with the remaining fold used for 

validation. This process is repeated several times depending on the number of 𝒌 folds, 

and afterwards, the performance is averaged across all trials (31).  

When training a neural network, several other components are crucial in ensuring 

that the network learns well on the training data and can generalise similarly well on the 

validation data: 

1. Epochs: Refers to a single pass the model completes throughout the entire dataset to 

update its weights (31). 

2. Batch size: Represents the number of training examples used in one iteration before 

updating the model's weights. It is essential to decide on a correct batch size number, as a 

small number limits the variations in the data from which the model can identify patterns. 

In contrast, a larger batch size number may result in significant computational processing 

costs (31).  
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3. Loss function: A loss function 𝐋  is used to evaluate how close the predicted output 𝒚 

is to the actual output 𝒛. In this thesis work, we use categorical cross-entropy loss 

(65), which is used for making multi-class classifications of two or more labels, for 

example, turning left, turning right, and moving forward.  

4. Learning rate: It is the pace at which the weights in the network are updated. The 

most popular method, and the one employed in this study, is the Adam optimiser (66).   

5. Dropout: A regularisation technique prevents overfitting by randomly removing 

neurons and their connections from the network during training (67). 

Overall, ANNs are a powerful tool for solving complex problems in many areas. 

However, they have several limitations. First, their black-box nature makes it challenging 

to understand how they make their predictions, which is an issue in cases where 

transparency and explainability are essential. In addition, they are prone to overfitting by 

learning too much from the training data and generalising poorly on the new, unseen data 

(31). Lastly, they also require substantial amounts of labelled data to train effectively, 

which can be laborious and time-consuming (31).  

 

2.3.2 Convolutional Neural Networks (CNNs) 

Convolutional neural networks (CNNs, or ConvNets) are a type of deep learning 

algorithm widely used in computer vision tasks, such as object recognition and image 

classification (60). Unlike other machine learning algorithms, such as logistic regression, 

and support vector machines, CNNs can process array-type data, such as pixel values 

from a 2D image, and extract high-level features. In other words, they can automatically 

learn and identify patterns and features from an image without explicit feature 

engineering as in other machine learning algorithms. A CNN is comprised of a series of 

layers, including the input layer, convolutional layers, pooling layers, and fully connected 

layers. The architecture of a typical CNN is shown in Fig. 2.7. 

 

 
Figure 2.7 | A simple overview of the different types of layers in a Convolutional Network. 

Note | This Figure showcases one frame from a 1-photon calcium imaging recording as the input image to the CNN 

model (adapted from (76)). 
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The input layer receives the input data, which can be an image 𝑰 with height, width, and 

the number of channels (one channel for each colour) as shown in Fig. 2.8. The number 

of channels depends on whether the image is grayscale (one colour) or RGB (red, green, 

and blue).  

 

 
Figure 2.8 | Illustrating an RGB image as an example of an input image to a CNN network. 

Note | An image and its pixel values in a ℎ𝑒𝑖𝑔ℎ𝑡 𝑥 𝑤𝑖𝑑𝑡ℎ arrangement consisting of three channel dimensions (RGB). 

 

In the convolutional layer, a filter (otherwise referred to as a kernel) performs an 

element-wise multiplication operation (Hadamard Product, see Fig. 2.9) called a 

convolution to extract high-level features such as edges or corners from the input image. 

The filter size depends on the dimensions of the input image (or the input vector). More 

precisely, a filter size of F x F is applied to an image of C colour channels to give us a 

filter of F x F x C volume that performs convolutions on the input image to give an 

output called a feature map O x O x K where K is the number of applied operations the 

filter made on the image and O the dimension of the feature map output. Stride S is the 

number of pixels values the filter of size F x F moves across the image to perform the 

convolution operation. Afterwards, the feature map becomes the input for the next 

convolutional layer, and the process repeats. Usually, multiple convolutional layers are 

required to extract complex features from the image (31). 

 
Figure 2.9 | A visual representation of a convolutional layer. 

Note | From O’Shea et al. (68) 

 

The pooling layers (Max pooling or Average pooling) reduce the spatial size of the 

convolved feature maps by applying dimensionality reduction with the goal of 

minimising the computational power required to continue processing the image. The 



 

19 

 

dimensionality reduction method works by merging similar features from the image and 

helps the network reduce the possibility of overfitting by improving its generalisation 

ability. Max and average pooling are two common pooling operations (31,60).  

The fully connected layers perform the final classification task based on the 

extracted features. The extracted features from these layers are fed into a flatten layer, 

which converts the values into a one-dimensional vector. This vector is then passed 

through a feed-forward neural network to perform the final prediction. Finally, the 

softmax activation function provides the probabilistic distribution of the predicted labels. 

As in regular neural networks, backpropagation is applied after each training session to 

adjust the network weights based on the difference between the predicted and actual 

output (see Fig. 2.7 for a visual representation of a fully connected layer within an overall 

CNN architecture).  

2.4 Related Work 

Sec. 1.2 mentions that limited research has been directed towards predicting animal 

behaviour from calcium imaging recordings using deep learning tools such as CNNs. To 

arrive at this conclusion, a comprehensive literature review was organised to assess the 

current state of research in the field and identify potential knowledge gaps. In Sec 2.4.1, 

we illustrate the methodology adopted for this literature analysis. At the same time, Sec. 

2.4.2 focuses on current approaches in CI analysis, while in Sec. 2.4.3, we comment on 

how CNNs have been employed for improving calcium imaging analysis workflows.  

 

2.4.1 Literature review 

The literature review approach has been influenced by Karolinska Institutet Library 

guidelines (69). The first step of the literature review was to determine appropriate search 

terms likely to yield the most relevant publications. The PICO (Problem, Intervention, 

Comparison, Outcome) framework (70), presented in Table 8.1 in the Appendix, 

illustrates how from the research questions outlined in Sec. 1.4, search blocks to find 

relevant literature on online databases were generated.  

 For this search, a multitude of databases were considered, including PubMed (71), 

Web of Science (72), IEEE Xplore (73), ACM Digital Library (74), and Google Scholar 

(75). Upon reviewing the findings of Falagas et al. (76), we selected the PubMed and 

Web of Science online databases as they’re more relevant for medical research or clinical 

topics and excluded Google Scholar due to the possible presence of incomplete or 

outdated information. As for computational material, the choice of IEEE Xplore has been 

preferred over ACM Digital Library. The former contains close to twice the number of 
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publications of the latter. Consequently, the primary databases selected for searching 

relevant literature are PubMed, Web of Science, and IEEE Xplore. 

An example of a search block used to search for available literature on the selected 

online databases is presented here: 

 

("calcium imaging" AND ("deep learning" OR "convolutional neural networks" OR CNN)) 

 

 Moreover, this literature review was conducted in February 2023. The search 

blocks were adapted to meet the corresponding search requirements for each database 

(one example is the use of Medical Subject Heading (MeSH) terms (77) in PubMed). In 

addition to the search queries, irrelevant publications were filtered out from the results if 

they weren’t open access, in English, and published between 2013 and 2023, most of 

which (75%) were published between 2019 and 2022.  

 Table 8.2 in the Appendix demonstrates the number of records identified per 

database using the corresponding search block queries. Additionally, the list of selected 

publications is cross-referenced with publications found via backward citation chaining 

(78). As a result, this thesis work is influenced by literature findings identified by 

structured (academic database search) and unstructured (manual search) approaches.  

 

Selection of findings 

After duplicate findings were removed with the Mendeley Desktop software, 65 

publications remained for further analysis. Two screening rounds were conducted to filter 

critical literature relevant to this work. The selection process of these findings has been 

summarised in the PRISMA flow diagram depicted in Fig. 8.2 in the Appendix.  

 

Synthesising literature findings 

The final 14 publications were selected to provide an overview of the field in calcium 

imaging techniques and any applications encompassing deep learning-based 

implementations such as CNNs. Most of the publications selected (75%) were published 

in 2019 or later (25,79–86), indicating a strong interest among researchers in exploring 

possible ways to enhance calcium imaging. The main criteria for choosing these 

publications were based on CNN or other deep learning implementations applied on 

calcium imaging data and secondly on other relevant techniques.  

 Moreover, the selected publications address the field of calcium imaging from 

different angles, such as the development of cell segmentation techniques with deep 

learning from one-photon or two-photon data (24,83,84,86,87), behaviour analysis or 

prediction from two-photon data (81,82), and analysis pipelines from one or two-photon 

data (85,88–90). Even though the behavioural experiments related to this thesis work 
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contain one-photon calcium imaging recordings, for this literature review, we have 

encompassed publications from both one-photon and two-photon implementations to 

gather more information on possible existing CI approaches with deep learning. From the 

selected publications, about 50% concern one-photon CI (85,86,89–92).  

 Even more limited is the number of publications that involve one-photon CI with 

any deep learning implementation. Only two publications (84,88) refer to this approach 

but concern only cell identification and not behaviour prediction from one-photon CI 

recordings which is the focus of this study. Nonetheless, this multitude selection of 

publications encompassing behaviour analysis, cell segmentation, and CI pipelines for 

either one-photon or two-photon calcium imaging has provided us with a strong 

understanding of the current state-of-the-art solutions in the field, while at the same time, 

augmented our belief that a potential knowledge gap exists in the area of behaviour 

prediction from one-photon calcium imaging recordings.  

 In addition, the use of CNNs from many of these publications 

(30,82,83,88,91,93,94) fuels us with even more motivation to pursue the investigation of 

this knowledge gap, as it stands as strong evidence that CNNs can be trained on CI 

recordings to infer possible behavioural interpretations. Table 8.3 in the Appendix 

summarises the content of the final 14 selected publications from the PRISMA flow 

diagram.  

 

2.4.2 Current Approaches in Calcium Imaging Analysis 

Various unsupervised and supervised methods of machine learning techniques have been 

utilised for source extraction (the task of extracting cells from calcium imaging 

recordings). A worth-noting supervised technique was recently applied by Apthorpe et al. 

2016 (95), where the authors demonstrated using a deep neural network for detecting 

neurons from CI recordings (95). Moreover, a constrained nonnegative matrix 

factorisation (CNMF) approach was proposed by Pnevmatikakis et al., 2016 (96), 

allowing for the extraction of spatiotemporal information in active cells from CI 

recordings. With this algorithm, it is possible to demix spatial overlapping cells with 

minimum parameter tuning (96). To further highlight developments in CI analysis, in this 

paper by Giovannucci et al., 2017, the authors developed a pipeline that processes 

fluorescence activity in real-time during experimental sessions (97). In a following paper 

by the same group (52), the authors developed CaImAn, an open-source tool for one-

photon and two-photon CI analysis that can execute both offline (after an experiment) 

and online analysis (by streaming data during the experiment) while using moderate 

infrastructure such as a personal laptop.  
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 More publications have surfaced on the aforementioned research work (98–100). 

However, most of these tools are complex for use by non-trained experts and require 

deeper knowledge of the parameters that must be tuned prior to the execution of the 

analysis pipeline. If the user is not an expert in the corresponding tool, any incorrect 

parameter setting may affect the credibility of the analysis outcome. With this need in 

mind, Minian, an open-source CI analysis pipeline, was recently developed to make CI 

analysis easier for non-experts to set up and execute (101). However, end users still find 

CI analysis pipelines difficult to implement, time-consuming, and tricky to infer 

behaviour interpretations from.  

 

2.4.3 CNN Applications in Calcium Imaging Analysis 

Recently, convolutional neural networks have emerged as a powerful tool for analysing 

calcium imaging data. In this Section, we briefly outline some methods identified from 

the literature search and have been deemed relevant to this thesis work. By elaborating on 

the use cases of CNNs in calcium imaging analysis, we hope to give the reader a first 

impression of how CNNs are relevant and appropriate for conducting and improving 

behavioural analysis on large-scale calcium imaging data.  

Commonly, human experts manually annotate the cell bodies displayed in calcium 

imaging movies with the aim of constructing a training dataset from which a CNN can 

learn to recognise neuronal activity patterns and perform classifications on new, 

unlabelled calcium imaging recordings (52,102,103). The manual annotation process may 

be time-consuming, but in addition to providing the model with data to train on, it also 

provides a good benchmark for comparing the performance of the CNN model to that of 

human experts (103). These developments demonstrate the potential for further 

automaticity in calcium imaging analysis processes using deep learning methods like 

CNNs (57).  

An open-source pipeline for calcium imaging analysis developed by Giovannucci et 

al. 2019 (52) introduces a CNN model trained by human experts to recognise neurons 

from streamed calcium imaging data. The CNN model discussed in this paper is trained 

to recognise the soma of each cell based on its spatial footprint in the recording and 

distinguish neurons from non-neurons, with the authors claiming it can accurately 

classify neurons and generalise across different calcium imaging datasets.  

Another application of CNNs for calcium imaging analysis is demonstrated in this 

research work by Yung et al. 2019 (104). The authors have used a Residual Network (or 

ResNet) CNN architecture (a pre-trained CNN model with promising performance in 

object detection tasks (105)). Their implementation was trained on a small size of 

calcium imaging datasets across different days where the data from each day was 
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randomly partitioned with a five-fold data separation process that is otherwise known as 

cross-validation (briefly described in Sec. 2.3.1.1) to achieve similar distributions 

between training and validation datasets. The authors applied a transfer learning strategy 

by adopting a pre-trained ResNet-18 model to address any limitations related to the small 

CI dataset. Transfer learning is a technique where a pre-trained CNN is used for a newly 

defined task. This approach may reduce overfitting possibilities, time, and resources from 

training a CNN model from scratch or when the training set size is limited or inadequate 

(106). 

 Furthermore, in the research work by Denis et al. 2020, DeepCINAC, a deep-

learning pipeline developed for calcium imaging analysis, is another noteworthy tool that 

analyses calcium movies by using a CNN model. This implementation aims to infer 

neuronal activity from CI recordings without human intervention for cell annotation or 

parameter setting. The model was initially trained on manual annotations conducted by 4 

human experts and processed by a CNN model with an attention mechanism, a method 

for selective focus on relevant parts of the input data to increase model performance, and 

a bidirectional long-short term memory (LSTM) structure that allows for capturing 

sequence dependencies in the training data making the model more capable of visual 

context comprehension. DeepCINAC can provide a classification output of cell activity 

ranging from 0 to 1, which refers to the cell activation level. It also provides cell type 

classifications of interneurons, pyramidal, or noisy cells. 

2.5 Beyond the State of the Art 

Neural recording methods, such as calcium imaging and their corresponding analysis 

pipelines, allow us to link animal behaviour to neural activity. However, as highlighted in 

Sec 2.4.2, some of the most popular and openly-available CI pipelines (98–100) have a 

range of limitations (i.e. complex use of the tool for non-experts, time-consuming 

processing, the requirement of deep knowledge of related parameters and how to set them 

in the pipeline) (101).  

As a first step to addressing these limitations, we conducted a literature search to 

study current processes in calcium imaging analysis. Most approaches 

(30,82,83,88,91,93,94) use different ML or DL algorithms, namely CNNs, to extract cells 

from calcium imaging videos. In contrast, we aim to skip this cell extraction step and 

feed the CI video recordings directly to a CNN to infer behavioural aspects from the 

experiment.  

The CI data utilised in this work for training and testing the CNN model 

implementation discussed in the following Chapters originates from a previous research 

study by Weglage et al. (107) at the K. Meletis Group, Department of Neuroscience, 
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Karolinska Institutet. A driving force for pursuing this thesis work is to demonstrate a 

technical solution that overcomes the current CI analysis limitations and enables 

researchers from non-technical backgrounds to use a tool that can enhance them in 

inferring behaviour correlations from behavioural experiments.   
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3 Methods 

In this chapter, we delve into the research approach of choice, the techniques for 

collecting and processing data, and the CNN model’s training, optimisation, and 

assessment for attaining the best possible research outcomes within the given 

development timeframe of this study. Additionally, we have highlighted the ethical 

considerations that were considered throughout the development of this work. 

3.1 Research Approach 

When undertaking a research objective, deciding on a suitable research strategy, and 

evaluating this decision against other potentially applicable approaches is imperative. 

Chiefly, choosing the correct research approach enhances our ability to answer the 

formulated research questions. In scientific research, a research strategy is a process of 

designing a framework that outlines methods and procedures to address research 

questions and evaluate the output (or research artefact) produced (108).  

Two research strategies were considered to establish that our approach is well-

defined and appropriate for investigating the research questions addressed in Sec. 1.4: the 

experiment and design science research strategies. The following Section shortly 

demonstrates each research strategy and a corresponding rationale for selecting or 

excluding each approach. 

 

3.1.1 Experiment Research Strategy 

An experiment research strategy, as defined by Johannesson and Perjons (109), 

involves enacting studies to test or prove a hypothesis and evaluate the effectiveness of 

the tested method in solving a particular problem. In even more detail, this strategy 

identifies relationships and measures the effects of one or more independent variables 

(also called experimental variables) on one or more dependent variables (110). Examples 

are provided in Table 3.1 below.  

 

Table 3.1 | Examples of relationships between the independent and dependent variable 

Independent Variables Dependent Variables (Outcome)  

Patient Diagnosed with a disease / Not diagnosed with a disease 

Customer Buys product / Does not buy product 

Animal Performs behaviour A / Does not perform behaviour A 

 

In this machine learning project, it is important to discuss how ML experiments differ 

from other experiments described in the literature. ML experiments are complex and 
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require running the experiment multiple times under different configurations. This study 

aims to test the hypothesis that a CNN model can be trained to predict animal behaviour 

directly from calcium imaging recordings without the need for calcium trace extractions. 

To achieve this, we designed technical processes that use previously collected calcium 

imaging data as independent variables to predict behavioural outcomes using CNNs. We 

conducted multiple experiments under various conditions and parameter configurations, 

and we introduced benchmark models to compare and evaluate the effectiveness of our 

deep learning approach, as required in any machine learning experiment.  

Given the time limitations for developing this thesis and considering the definition 

of the experiment research strategy, we have opted for this research methodology 

compared to the design science research strategy as it permits more flexibility in 

designing experimental research processes. 

 

3.1.2 Design Science Research Strategy 

A design science research strategy is a problem-solving paradigm for creating new 

methods, models, and constructs (called artefacts) to solve a real-world problem and 

enhance human knowledge (108).   

In the context of this work, the creation of the CNN-based deep learning pipeline, 

constituted of a multitude of machine learning libraries, is the artefact. The real-world 

problem we aim to solve is improving the current calcium imaging analysis pipelines 

using CNNs to extract all possible neural information from animal-based behavioural 

assays. Moreover, the design science research strategy consists of various development 

phases comprising the DSR Process (111) (see Fig. 8.3 in the Appendix). Even though 

this research strategy may be a more comprehensive and suitable approach for this study, 

it has not been selected due to time limitations. 

3.2 Experimental Setup 

3.2.1 Environment  

To develop the model described in this thesis, we utilised hardware resources made 

available from the K. Meletis Group. A regular computer was provided to develop the 

code for the CNN model, and a high-performance accelerated computer was utilised for 

training and assessing the performance of the CNN model, allowing for much faster 

processing times (see Appendix Table 8.4 for the hardware specifications of both 

computers used in this study). For pre-processing, data analysis, and building the CNN 

model, we used the Python programming language (v. 3.10.9) (112) and the JupyterLab 

code editor (113) in an isolated conda environment (114) where all the project’s 
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components, such as dependencies and packages are encapsulated. For version control, 

we used Git (115) and uploaded the code to GitHub (115), an open-source website for 

code development (source code available here: link to an external website). Additionally, 

we used the packages and libraries mentioned in Table 3.2 below. 

 

Table 3.2 | Packages/Libraries utilised in the study. 

Package/Library  Type  Version  Purpose  

Pandas  Library   1.5.3 Data manipulation and analysis  

NumPy   Library   1.24.2 For scientific computing, including working with arrays 

and matrices  

Matplotlib  Library   3.7.1 Data visualization  

Seaborn  Package   0.12.2 Data visualization  

TensorFlow  Library   2.11.0 For building and training machine learning models  

Keras  Package   2.11.0 For building and training deep learning models  

CUDA Toolkit  Package   11.5 For speeding up the training process of the DL model by 

using a GPU  

 

3.2.2 Datasets 

The data used to train the CNN model originated from a behavioural experiment 

conducted before the commencement of this thesis work and concerned three Oprm1+ 

Cre mice (see Sec. 2.1.3.1 for more experiment details). In particular, the different types 

of datasets generated from these experimental sessions and their purpose are displayed in 

Table 3.3.  

 

Table 3.3 | Choice of datasets and purpose of use. 

Dataset Type Description Purpose 

Behaviour Segmentation .h5 Segmentation of each frame 

to one behaviour class 

Retrieve behaviour labels 

Alignment data .csv Contains reward delivery 

information and assists with 

synchronizing calcium and 

behavioural recordings.  

Align behaviour labels 

with calcium imaging 

frames 

Calcium Imaging video .nwb Contains the video recording 

derived from the miniscope 

device.  

Input data for the CNN 

model 

 

 

 

https://github.com/konkalaitzidis/direct-Behavior-prediction-from-miniscope-calcium-imaging-using-convolutional-neural-networks
https://kise-my.sharepoint.com/personal/konstantinos_kalaitzidis_stud_ki_se/Documents/Arrow_Maze#_The_
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Calcium Imaging Recordings 

Fig. 3.1 illustrates 5 random calcium imaging frames from a single experimental session 

with corresponding behaviour label annotations. These image-label pairs are provided as 

input to the CNN model for training. More specifically, these frames are produced from a 

miniscope capturing about 25000-frames-long image series from a 1𝑚𝑚 field of view, a 

resolution of 350 𝑥 400 pixels and acquired at a frame rate of 20 𝐻𝑧. To train the CNN 

model, we tried two different methods. The first involved training and validating one 

video from a single behavioural session. The second involved using multiple videos from 

various behavioural sessions involving the same animal. 

 
Figure 3.1 | Five randomly chosen frames from a calcium imaging video annotated with their corresponding behaviour 

label. 

3.3 The Behaviour Prediction Neural Network (BPNN) 

Our objective was to create a CNN model capable of interpreting behaviour from calcium 

imaging recordings without requiring the step of calcium trace extraction that is present 

in current pipelines. For this purpose, we developed the Behaviour Prediction Neural 

Network (BPNN), a CNN model for simple image classification on frames from calcium 

imaging recordings. The BPNN tool uses a Sequential architecture (116) to extract 

neuronal features from calcium imaging frames of one animal, associate them with 

assigned behaviour labels (such as rearing, grooming, turning, running, stopping, and 

others), and perform behaviour correlations. Fig. 3.2 provides an overview of where the 

BPNN pipeline fits in the overall workflow of experimental behavioural analysis. 
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Figure 3.2 | Illustration of the BPNN within a proposed behavioural analysis workflow. 

Note | Steps 1-2 relate to current processes of acquiring neural activity from calcium imaging. Steps 3-6 relate to the 

process involving the BPNN tool and how it processes neural data. 

1. Injection of a virus responsible for expressing the GCaMP8 fluorescence indicator. 

2. A. A mouse with an integrated miniscope for recording neural activity during behavioural assays. 

    B. An upward view of the Arrow Maze experiment (see Sec. 2.1.3.1) filmed by a camera while the mouse is 

performing the experiment. 

3. Temporal alignment for calcium imaging frames (A) showing activated neurons with the behaviour annotation 

dataset (B). 

4. Creating pairs of individual calcium imaging frames and the corresponding behaviour label at the specific time point 

during the experiment. This is used as the input dataset for the BPNN.  

5. Split of the dataset into training and validation parts. The model is trained on the train set and evaluated on the 

validation set. 

6. The BPNN produces an output in the form of a confusion matrix to demonstrate its ability to predict true labels from 

the dataset.  

 

 

https://kise-my.sharepoint.com/personal/konstantinos_kalaitzidis_stud_ki_se/Documents/Arrow_Maze#_The_
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3.3.1 Data Pre-processing 

The BPNN tool has a primary advantage over other calcium imaging analysis tools (14,1 

6,25,67,72,73) in that it requires minimal pre-processing of raw calcium imaging videos. 

However, before the calcium imaging video can be fed into the CNN model for training, 

some pre-processing is still necessary. This tool primarily targets computational 

neuroscientists, bioinformaticians, and researchers interested in behavioural analysis of 

neural recordings. To cater to the users' needs, the pre-processing stage of the tool is 

automated, requiring the users to provide only the originally required files as input. 

 

Step 1: Pre-processing of Calcium Imaging Recordings  

The pre-processing stage begins by loading the Behaviour Segmentation, Alignment, and 

Calcium Video datasets into the pipeline. The miniscope (for recording calcium imaging 

videos) is detached and reattached between experimental sessions of the same animal 

across different days. This process may produce motion artefacts in the field of view, 

potentially interfering with the model's ability to learn from the images and detect 

patterns. To train the BPNN model, multiple calcium videos are selected, concatenated, 

and cropped based on a pre-defined set of X and Y coordinates to ensure the same field of 

view is extracted from all video recordings. 

 

Step 2: Label Selection  

The next step is to temporally align the Behaviour Segmentation and Alignment datasets 

such that each frame from the concatenated calcium video has a corresponding behaviour 

label. Initially, individual behaviour labels generated from the Hidden Markov model (as 

described in Sec. 2.1.3.2) are assigned to the corresponding calcium frame based on the 

temporal alignment. A filtering process is applied to identify all individual behaviour 

states from the corresponding recording session. Depending on the type of experiment, 

labels can be merged with other labels or even removed from the final input dataset, thus 

ensuring that the model is trained only on calcium imaging frames of interest. Lastly, 

each label is assigned a numerical ID to facilitate easier recognition by the model. 

The class imbalance of the different behaviour classes is also inspected to 

contextual associations of the mouse’s behaviour during each experimental session. 

Figures 3.3, 3.4 and 3.5 show examples of behaviour label distributions from varying 

behavioural experimental assays originating from the Arrow Maze set-up.  
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Figure 3.3 | Class balance of 25 behaviour labels from the experimental session of Animal 3 (Day 11). 

 

 
Figure 3.4 | Class balance of 3 location-based labels from two different animals from the same corresponding 

experimental day (Day 11). 

Note | The labels shown in Fig. 3.3 have been merged into the 3 spatial (location-type) behaviour labels describing 

where the mouse is in the Arrow Maze experiment e.g., the Main Corridor, Left Corridor, or Right Corridor. This label 

configuration is sometimes employed to observe where the mouse spends most of its time during the experiment to 

understand the extent to which the mouse has learned the task. As observed from the Fig. 3.4, most of the behaviour 

labels are the Main and Left Corridor labels, indicating that the mouse has learned the task to a certain extent (for 

example, travelling from the Initiation Spout to the Reward Spout – see Sec. 2.1.3.1 for more information on the Arrow 

Maze experiment).  

 

https://kise-my.sharepoint.com/personal/konstantinos_kalaitzidis_stud_ki_se/Documents/Arrow_Maze#_The_
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Figure 3.5 | Class balance of 6 different behaviour labels from the Arrow Maze experiment (Day 11). 

Note | Day 11, Animal 3 (Left), Animal 2 (Right). The labels depicted above reflect behavioural mice information 

during the Arrow Maze task in contrast to the location-type labels shown in Fig. 3.4. They don’t depict where the 

mouse is (spatial labels) but rather what it is doing (behaviour labels) such as grooming, frozen (standing still), not 

moving (staying in the same region in the maze), moving, turning right and turning left. 

 

Step 3: One-hot Encoding 

Finally, the distinct number of behaviour labels is converted to categorical values with a 

process called one-hot encoding. One-hot encoding converts the integer-encoded class 

labels into a binary matrix representation, where each row corresponds to a sample and 

each column corresponds to a class label (117). Fig. 3.6 exemplifies how one-hot 

encoding is applied in the context of behavioural labels.   

 

 
Figure 3.6 | One-hot encoding applied on behaviour labels. 

Note | One-hot encoding allows for categorical data to be represented as numerical data making it easier for an ML 

model to distinguish different behaviour classes. 

 

Step 4: Data Verification 

The next pre-processing step is data verification of the calcium imaging frames and the 

assigned behaviour labels. Five random calcium imaging frames and their corresponding 

behaviour labels are visualised to ensure the alignment process has been performed 

correctly (see Fig. 3.1). 

 



 

33 

 

 

 

Step 5: Dataset Splitting 

The final pre-processing step involves splitting the data into training and validation sets. 

Fig. 3.7 demonstrates how the datasets are split with the K-fold cross-validation method 

validation (see Sec. 2.3.1.1 for more information on the cross-validation technique). 

 

 

 

 

Figure 3.7 | BPNN data flow schematic. 

Note | Schematic summarising steps 1 to 5 as discussed above of the data flow from loading the calcium imaging 

videos and behavioural labels to model training and evaluation.  

 

3.3.2 BPNN Architecture 

The BPNN pipeline contains a convolutional neural network with a Sequential 

architecture commonly used for image classification tasks (118). The input shape is 

393 𝑥 444 𝑥 1, indicating that the images we input into the model are 393 pixels in 

height and 444 pixels in width, with “1” representing a single channel of grayscale 

images.  

In addition, the model incorporates two convolutional layers with 32 and 64 filters, 

each with a filter size 3 𝑥 3. Each convolutional layer utilises a ReLU activation function 

to introduce non-linearity into the model. The output of each convolutional layer is then 

passed through a max pooling layer with a pool size of 2 𝑥 2. This pooling layer helps 

reduce the spatial dimensions of the output and captures the most important information 

from each layer. 

The Flatten layer receives the output from the second max pooling layer and 

transforms it into a 1D vector, allowing the fully connected layers to process the 

extracted features. Next, the output from the flatten layer is fed into a dropout layer, 

which helps prevent overfitting by randomly disabling a certain proportion of nodes. 
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Following the dropout layer is a fully connected (Dense) layer with 128 units and a 

ReLU activation function. 

Lastly, the output layer comprises several units corresponding to the specific 

number of classes present in the problem. Additionally, it includes a softmax activation 

function, which enables multi-class classification by producing a probability distribution 

over the classes. Fig. 3.8 visualises all the layers of the network architecture mentioned 

above. Fig. 8.4 in Appendix depicts Fig. 3.8 in a more top-down format. 

 

 
Figure 3.8 | The basic architecture of the BPNN model. 

 

3.3.2.1 Adding the Element of Time in the BPNN model 

When neurons are activated, the fluorescence that is captured from the miniscope device 

fluctuates over a period 𝑡, where 𝑡 is the entire time duration of the corresponding 

calcium imaging recording session. To improve the model’s ability to identify and extract 

distinct patterns of neural activity and perform neurobehavioural correlations, we 

modified the number of channel dimensions that can be used during the training process 

from 1 channel dimension (the typical setting for grayscale images) to 3 or 5 channel 

dimensions (see Sec. 2.3.2 for more on channel dimensions).  

The input data in the BPNNt  (𝑡 for time), receives a sum of different grayscale 

images that are sequentially related (one frame after the other). For example, the CNN 

model receives an input image 𝐼𝑖 where 𝑖, is the 𝑖𝑡ℎ frame of the input dataset 𝐼. When 

adding the element of time 𝑡, the model will also receive the images 𝐼𝑖 − 1 and 𝐼𝑖 + 1 ( 

for 3 channel dimensions) and the sequence of frames, in this case, would be 𝐼𝑖 − 1, 𝐼𝑖,

𝐼𝑖 + 1. This sequence of images allows the CNN model to capture fluorescence changes 

that may be relevant in specific animal behaviours making it easier for the network to 

recognise and extract features and patterns in the dataset and correlate them to 

behavioural. 

 

3.3.3 The Behaviour Prediction Support Vector Machines (BPSVM) Model 

The BPSVM model can categorise extracted calcium traces into different behaviour 

groups and was developed to serve as a benchmark for comparison with the BPNN 

model. We hypothesised that the BPSVM model will outperform the BPNN model as it 

utilises support vector machines (SVMs), a current state-of-the-art method for associating 

neural activity with behaviour from calcium imaging movies.  
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If the BPNN model produces a similar or better performance than the BPSVM, it 

indicates that CNNs are a suitable deep-learning method for conducting behaviour 

correlations from calcium imaging recordings without the time-consuming pre-processing 

step of extracting calcium traces. In addition, similarly to the BPNNt, a modified version 

of the BPSVM was created, the BPSVMt, to account for differences in the calcium trace 

signals and to make fair comparisons with the BPNNt.  

 

3.3.4 Model Training 

Throughout the BPNN training phase, we aimed to test various configurations and 

determine the optimal combination of parameters for a CNN model that could perform as 

well as or even better than BPSVM. Therefore, it is crucial to carefully select the loss 

function, optimiser, evaluation metrics, and regularisation techniques when developing a 

model training routine, as they all significantly impact the model's performance. We have 

outlined the selected parameters and our reasoning behind them in Table 3.4. 

 
Table 3.4 | Choice of training parameters used in the BPNN. 

Parameter Type Purpose 

Loss function Categorical cross-entropy For multi-class classifications 

(two or more labels) 

Optimizer Adam Suitable for a wide range of 

neural network architectures 

Evaluation Metrics Accuracy, Loss, F1-Score For monitoring training progress 

and overfit/underfit potentiality 

Regularization Techniques Dropout To prevent overfitting 

 

 

Training Protocol 

While developing the BPNN model, we carefully considered different training protocols. 

To ensure a fair comparison between our implementation and the benchmark solution, we 

applied the same parameters for both models. These included training, validating, and 

testing both models using the same input data and data-splitting methods, such as K-Fold 

cross-validation. We also ensured that both models were trained with the same number of 

behaviour labels. Additionally, we estimated the chance-level accuracy for both models 

to better evaluate their performance compared to the chance outcome. See Table 3.5 for 

more information on the training protocol parameters.  

 The choice of input datasets also influenced the training protocol. Ultimately, we 

concatenated 3 calcium imaging videos acquired from the same animal but from different 

days and implemented the 5-fold cross-validation method for splitting the dataset into 
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training and validation parts. Furthermore, during training, a background removal process 

was carried out on each calcium imaging frame to enhance the model's ability to detect 

patterns from the calcium imaging frames. This operation enabled the CNN model to 

better differentiate between the foreground and background elements in the frames, 

thereby allowing it to extract relevant features for learning associations between neuronal 

activity and behavioural labels. In addition, after the background removal process, the 

image pixel values were normalised to a range between the minimum and maximum 

pixel values. Normalisation ensures that the pixel values of the images are within a 

standard range, which is essential for reducing the impact of variations in brightness and 

contrast among the frames. This step was necessary to standardise the input data and 

achieve more stable training results. 

 
Table 3.5 | Training protocol parameters 

Training protocol parameters BPNN BPSVM 

Data Splitting Method 5-Fold CV 5-Fold CV 

Early Stopping Yes * 

Epochs 50 * 

Number of labels  25 / 3 / 6 6 

Calcium Imaging videos 3 concatenated / 1 3 concatenated / 1 

Chance level prediction result Yes Yes 

Batch-size 32 * 

Animals Animal 2/3 Animal 2/3 

Training days Days 8, 9, 10, 11 Days 8, 9, 10, 11 

* Not applicable 

 

Note | For training the BPNN or BPSVM models with one calcium imaging recording, the experimental session from 

Day 11 of Animal 3 (highlighted in bold) was used. Animal 3 was observed by the experimenters to have learned the 

task more effectively than Animals 1 and 2 on the corresponding day (Day 11), hence the reason for choosing this 

dataset for training the models to perform neurobehavioural correlations instead of others. It is possible to train the 

model on any experimental session from any animal. However, researchers need to account for incorrect behaviour to 

calcium activity correlations if the corresponding experimental session concerns earlier days (Days 1, 2, 3, for 

example) when the mouse is still learning the task. To compare the best-performing model across animals, we executed 

the most optimal configuration with calcium imaging data on Day 11 from Animal 2, as shown in Sec. 4.4. 

 

 

3.3.5 Model Evaluation 

To verify that the model has been adequately trained to make plausible associations 

between calcium imaging data and interoperations of either spatial or functional activity 

during the behavioural task, it must be compared against current well-established 

solutions practised at the K. Meletis Group. Our approach has been to test the efficacy of 

the BPSVM model in predicting behaviour in one animal under certain conditions and 
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compare it with the BPNN model’s efficacy for the same animal and under the same 

conditions. 

3.3.5.1 Evaluation Metrics 

To measure the performance of the BPNN model, the accuracy, loss, and F1-score 

metrics have been chosen. Accuracy indicates the proportion of correctly classified 

examples to the total number of examples. 

 

𝐴𝑐𝑐 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
   (119) 

 

Fig. 3.4 shows that most label instances are the Main and Left corridor labels. Given the 

context of the Arrow Maze experiment described in Sec. 2.1.3.1, this distribution 

indicates that the mouse is moving most of the time between these two corridors 

indicating that it has learned the task to a certain extent. However, the accuracy metric 

may not be the most appropriate for imbalanced datasets. For this reason, we have also 

employed the F1-score, which is the harmonic mean of precision and recall.  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑝∗𝑟

𝑝+𝑟
 (119) 

 

Precision refers to the number of true positive predictions divided by the total number of 

positive predictions. At the same time, recall is the number of true positive predictions 

divided by the total number of positive examples in the dataset. Loss, on the other hand, 

measures the difference between the predicted behaviour labels and the actual behaviour 

labels. It is adopted for optimisation purposes as a metric during the training stage of the 

CNNs, by penalising the model for incorrect predictions made with higher confidence 

(120).  

Other evaluation methods are confusion matrices (shown in Fig. 3.9), a helpful tool 

in visualising a model’s performance by looking at how many correct label classifications 

have been made compared to the actual labels to depict whether the model has been 

trained well enough to predict behaviour from unseen data points.  

 

https://kise-my.sharepoint.com/personal/konstantinos_kalaitzidis_stud_ki_se/Documents/Arrow_Maze#_The_
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Figure 3.9 | An example of a confusion matrix applied to mice behavioural data. 

Note | This example of a confusion matrix illustrates that a DL model is able to correctly predict the label Moving for 

2072 data samples (True Positive) and was able to incorrectly predict the label Immobile for 692 samples (False 

Positive). For the label Moving the model has been able to accurately predict the behaviour with 75% accuracy.  

3.4 Ethical Considerations  

Calcium imaging is a neuroimaging technique that enables the investigation of neuronal 

activity of single or population-level neuronal structures of interest in living animals 

(121). However, applying a recording mechanism, like a miniscope for one-photon or 

two-photon calcium imaging, necessitates an invasive surgical operation on the animal's 

head. Furthermore, these animals are sacrificed after their study has been completed.  

Additional animal experiments are typically required to produce enough training 

data for a CNN model to learn from and extract useful biological interpretations. 

Nevertheless, repurposing data from previous experiments to produce the required data 

may offer a possible solution to this ethical problem. In this study, for example, we did 

not conduct invasive surgical operations on animals for the purposes of the thesis, nor did 

we initiate any animal testing on behalf of it. Instead, we repurposed existing data from 

previously conducted experiments for which researchers had already acquired appropriate 

ethical permits. In the future, having sufficiently large and well-managed data from 

calcium imaging recordings, either from past or ongoing experiments, could help train 

CNNs more effectively and potentially limit, to a certain extent, the need for animal 

testing. 

It is worth noting, however, that potential bias can arise with all machine learning 

models. For example, erroneous label classifications may result in a model that predicts 

animal behaviour inaccurately. Hence, trained experts must ensure that ground truth 

labelling is cross-checked before inputting into a CNN model. 
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4 Results 

In this Section, we present the results from the three different challenges developed to 

assess the model’s capability of providing behavioural correlations from calcium imaging 

data. The first challenge concerned the BPNN’s ability to perform behaviour correlations 

from one calcium imaging video with three different behaviour label configurations 

(see Sec. 3.3.1 for more information on the label class balance). This experiment allowed 

us to select the most optimal behaviour label configuration for the next model executions. 

The second challenge required the BPNN to identify behaviour correlations from a 

larger calcium video consisting of three different calcium imaging videos originating 

from the same animal and recorded across different days (for example, experimental 

sessions performed on days 8, 9, and 10). This would allow us to observe how the 

BPNN's ability to perform behaviour correlations improves with more training data from 

across different days. 

Furthermore, the third challenge involved modifying the BPNN to account for time 

relevance during training to ensure the model can identify patterns from the fluctuations 

of the fluorescently activated neurons. In this case, we ran the BPNN twice, once for 

multiple calcium recording datasets (Days 8, 9, and 10) and once for an individual 

recording (Day 11). Finally, the BPNN is compared to chance-level configurations 

throughout these experiments by shuffling the behaviour labels and the BPSVM, our 

benchmark model developed to assess the model’s performance compared to current 

alternatives. In addition, we demonstrate the performance of our best performing model 

when executed with data from another animal (Animal 2) to assess its performance across 

animals.  

4.1 Evaluating Performance Across Different Label Configurations  

The first challenge for testing the BPNN’s ability to perform behaviour correlations is to 

use the pair of frame-label information from one calcium imaging movie. We trained the 

model on one calcium imaging recording with three different behavioural datasets. On all 

three model executions, we adopted the 5-Fold cross-validation method for splitting the 

dataset into training and validation sets. Finally, we added an early stopping mechanism 

to prevent the model from overfitting on the training data and standardised the number of 

epochs to 50 (meaning 50 single passes the model completes throughout the entire dataset 

to update its weights).  

Table 4.1 provides an overview of this experiment’s specifications. The number of 

25 class labels indicated in Table 4.1 involve all the defined behaviours in the 

Animal3learday11 experimental session; the number of 3 (merged-spatial) class labels 
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refers to the merging of the previous 25 behaviours to 3 new labels based on the corridor 

of the Arrow Maze task on which they occur, and 6 (behaviour) labels refer to another set 

of behaviour annotations that include mouse activity such as grooming, frozen, not 

moving, moving, turning right, and turning left (Sec. 3.3.1 provides a more extensive 

elaboration on the origin and meaning of these labels). Figures 4.1, 4.2, and 4.3 illustrate 

the averaged accuracy and loss results across 5-Folds of the training and validation data 

for Exp_1.1, Exp_1.2 and Exp_1.3.  

 

Table 4.1 | Experiment specifications. 

Model 

Execution ID 

No. of Videos Experimental Session(s) No. of Class Labels Train/Validation 

Split Method 

Exp_1.1 1 Animal3learnday11 25 (All) 5-Fold CV 

Exp_1.2 1 Animal3learnday11 3 (Merged - Spatial) 5-Fold CV 

Exp_1.3 1 Animal3learnday11 6 (Behaviour) 5-Fold CV 

     

Note | The notation “Animal#learnday#” refers to the behavioural experimental session from which calcium imaging 

recording have been used as input for training and validating the BPNN model. 

 

 

Exp_1.1: Training the BPNN with one CI recording of 25 labels. 

 
Figure 4.1 | Accuracy (A) and Loss (B) for the training and validation data averaged across 5 folds with 25 labels 

(BPNN, 1 CI video). 
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Exp_1.2: Training the BPNN with one CI recording of 3 labels (merged from 25). 

 
Figure 4.2 | Accuracy (A) and Loss (B) for training and validation data averaged across 5 folds with 3 labels (BPNN, 1 

CI video). 

 
Exp_1.3: Training the BPNN with one CI recording of 6 labels. 

 
Figure 4.3 | Accuracy (A) and Loss (B) for the training and validation data averaged across 5 folds with 6 labels 

(BPNN, 1 CI video). 

 

Table 4.2 summarises the BPNN tool's performance following the execution of the 

specified parameters above. The label configuration that performs the best is highlighted 

in bold font. It was found that although the 3 spatial labels configuration produced a the 

highest F1-score (0.56), using 6 labels with a score of 0.55 is a better option overall due 

to having more behavioural classifications from which prediction can be made from the 

BPNN model. As a result, the label configuration from Exp_1.3 was selected for 

following model executions. The poorest performing configuration was observed when 

using all behaviour labels in Exp_1.1 to train the BPNN model, which produced an F1 

score of 0.39. Despite the best-performing configuration being Exp_1.3, the overall 

results suggest that the BPNN model is prone to overfitting on the training data, making it 

challenging to produce accurate predictions on unseen data from in the validation set. 



 

42 

 

Table 4.2 | Comparing the evaluation metrics across different label configurations. 

Experiment 

ID 

Label Configuration Training Accuracy (%) Validation 

Accuracy (%) 

F1-

score 

Exp_1.1 All Labels (25) 84.73 39.77 0.39 

Exp_1.2 Spatial Labels (3) 79.60 51.89 0.56 

Exp_1.3 Behaviour Labels (6) 79.25 55.89 0.55 

     

4.2 Training with Multiple Calcium Imaging Recordings 

In Sec. 4.1, we observed that the BPNN model was overfitting, resulting in lower 

validation accuracy than training accuracy. To address this problem, we concatenated 

multiple calcium imaging videos from the same animal across different experimental 

sessions (Days 8, 9, and 10) to provide the model with more data to train and validate on. 

The same label configuration that performed the best in the previous experiment 

(Exp_1.3) was applied. In Figures 4.4, 4.5, and 4.6 we demonstrate the BPNN's 

performance using multiple calcium imaging videos, the chance-level accuracy when 

shuffling the labels, and compare it to the BPSVM model, the current benchmark 

comparison. 

 

Table 4.3 | Experiment specifications for executing the BPNN and BPSVM models on larger datasets. 

Model Model 

Execution ID 

No. of 

Videos 

Experimental 

Session(s) 

No. of Class 

Labels 

Train/Validation 

Split Method 

BPNN Exp_2.1 3 Animal 3, days 8, 9, 10 6 (Behaviour) 5-Fold CV 

BPNN Chance Exp_2.2 3 Animal 3, days 8, 9, 10 6 (Behaviour) 5-Fold CV 

BPSVM Exp_2.3 3 Animal 3, days 8, 9, 10 6 (Behaviour) 5-Fold CV 

BPSVM Chance Exp_2.4 3 Animal 3, days 8, 9, 10 6 (Behaviour) 5-Fold CV 

 

 

Exp_2.1: BPNN results 

 
Figure 4.4 | Accuracy (A) and Loss (B) for the training and validation data averaged across 5 folds (BPNN, 3 CI 

videos). 



 

43 

 

 
Exp_2.2: BPNN Chance-level results 

 
Figure 4.5 | Chance-level Accuracy (A) and Loss (B) for training and validation data averaged across 5 folds (BPNN 

chance, 3 CI videos). 

 

Exp_2.3 / Exp_2.4: BPSVM and Chance-level results 

 

 
 

Figure 4.6 | Accuracy, loss, and confusion matrices for BPSVM and BPSVM Chance (3 CI videos). 

A. Accuracy and chance-level accuracy averaged over 5 folds. 

B. Loss and chance loss averaged over 5 folds. 

C. Confusion matrix for 6 behaviour labels 

D. Confusion matrix for 6 shuffled behaviour labels 
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Tables 4.4 and 4.5 summarise the performance of the BPNN and BPSVM tools, 

following the execution of the specified parameters found in Table 4.3 above. The model 

that performs the best is highlighted in bold font. Contrary to initial expectations, it was 

found that with more data the BPNN model achieved a validation accuracy of around 

41%, considerably less than the 55% accuracy observed in Exp_1.3 (Table 4.2) where 

the BPNN model was trained on one calcium imaging recording. Conversely, the 

BPSVM tool performed slightly worse than the BPNN tool, leaving room for the 

interpretation that the CNN model can perform similarly well with a support vector 

machine model. Both models achieve better performance than their chance-level 

counterparts.  

 

Table 4.4 | Comparing the BPNN and Chance-level evaluation metrics. 

Model Training Accuracy (%) Validation Accuracy (%) F1-score 

BPNN 68.15 41.50 0.44 

BPNN Chance 47.80 39.69 0.40 

 

Table 4.5 | Comparing the BPSVM and chance level evaluation metrics. 

 

 

4.3 Adding Time in the BPNN and BPSVM Models 

The next challenge is to investigate the model’s ability to arrive at behavioural 

correlations when the time element is introduced in the training process. For this reason, 

we have developed a refined version of the BPNN model called BPNNt, which can take a 

multitude of frames before and after the current frame that is being processed to account 

for fluctuations in the fluorescent neurons recorded in the calcium video (See Sec. 3.3.2.1 

for more information on the BPNNt). 

 

4.3.1 Comparing the BPNNt and BPSVMt Across Multiple Recordings 

To ensure that we can compare the results of this model with its previous versions, we 

developed the BPSVMt, a similar configuration to BPSVM. We continued training and 

validating our model using the same CI and behavioural label datasets as shown in Table 

4.3 (3 calcium videos with 6-label behaviour datasets each).  

 

Model Accuracy (%) F1-score 

BPSVM 39.66 0.40 

BPSVM Chance 28.94 0.26 
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Table 4.6 | Experiment specifications for executing the BPNNt and BPSVMt 

Model Model 

Execution ID 

No. of 

videos 

Experimental 

Session(s) 

No. of Class 

Labels 

Train/Validation 

Split Method 

BPNNt Exp_3.1 3 Animal3, days 8, 9, 10 6 (Behaviour) 5-Fold CV 

BPNNt Chance Exp_3.2 3 Animal3, days 8, 9, 10 6 (Behaviour) 5-Fold CV 

BPSVMt Exp_3.3 3 Animal3, days 8, 9, 10 6 (Behaviour) 5-Fold CV 

BPSVMt Chance Exp_3.4 3 Animal3, days 8, 9, 10 6 (Behaviour) 5-Fold CV 

 
 

Exp_3.1: BPNNt results 

 
Figure 4.7 | Accuracy (A) and Loss (B) for training and validation data averaged across 5 folds (BPNNt, 3 CI videos). 

 

 
Exp_3.2: BPNNt Chance-level results 

 
Figure 4.8 | Accuracy (A) and Loss (B) for training and validation data averaged across 5 folds (BPNNt, 3 CI videos). 
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Exp_3.3 / Exp_3.4: BPSVMt and Chance-level results 

 

 
 

Figure 4.9 | Accuracy, loss, and confusion matrix for BPSVMt and BPSVMt Chance with shuffled labels (BPSVMt, 3 

CI videos). 

A. Accuracy and chance-level accuracy averaged over 5 folds. 

B. Loss and chance loss averaged over 5 folds. 

C. Confusion matrix for 6 behaviour labels 

D. Confusion matrix for 6 shuffled behaviour labels 

 

The performance of BPNNt and BPSVMt tools have been summarised in Tables 4.7 and 

4.8. By incorporating the time element in training with 3 CI videos, the BPNNt achieved 

a slightly higher F1-score of 0.46 compared to BPNN’s 0.44 shown in Table 4.4. The 

BPSVMt managed to get an F1-score of 0.39, which is lower than BPNNt's performance; 

however, the difference is negligible since the validation accuracy is relatively low on 

both occasions. This may suggest that training the BPNN model with data from different 

experimental days decreases overall performance.  

 
Table 4.7 | Comparing the BPNNt and Chance-level evaluation metrics. 

Model Training Accuracy (%) Validation Accuracy (%) F1-score 

BPNNt 82.07 44.94 0.46 

BPNNt-Chance 41.05 36.87 0.34 
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Table 4.8 | Comparing the BPSVMt and Chance-level evaluation metrics. 

 

 

 

 

 

 

4.3.2 Comparing the BPNNt and BPSVMt on one Recording 

A final set of experiments was conducted for testing the BPNNt and BPSVMt tools on a 

single calcium imaging recording. As in previous experiments, the experiment's 

specifications are presented in Table 4.9, and the results are depicted in Figures 4.10, 

4.11, 4.12 and 4.13. Lastly, we have included the evaluation metrics results in Tables 

4.10 and 4.11. 

 

 
Table 4.9 | Experiment specifications for executing the BPNNt and BPSVMt models. 

Model Model 

Execution ID 

No. of 

Videos 

Experimental 

Session(s) 

No. of Class 

Labels 

Train/Validation 

Split Method 

BPNNt Exp_4.1 1 Animal3, day11 6 (Behaviour) 5-Fold CV 

BPNNt Chance Exp_4.2 1 Animal3, day11 6 (Behaviour) 5-Fold CV 

BPSVMt Exp_4.3 1 Animal3, day11 6 (Behaviour) 5-Fold CV 

BPSVMt Chance Exp_4.4 1 Animal3, day11 6 (Behaviour) 5-Fold CV 

 

 

 

Exp_4.1: BPNNt results 

 
Figure 4.10 | Accuracy (A) and Loss (B) for training and validation data averaged across 5 folds (BPNNt, 1 CI video). 

 

 

 

Model Accuracy (%) F1-score 

BPSVMt 41.05 0.39 

BPSVMt-Chance 28.26 

 

0.27 
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Exp_4.2: BPNNt Chance-level 

 
Figure 4.11 | Chance accuracy (A) and chance loss (B) for training and validation data averaged across 5 folds (BPNNt 

chance, 1 CI video). 

 
Exp_4.3 / Exp_4.4: BPSVMt and Chance-level results 

 

 
 

Figure 4.12 | Accuracy, loss, and confusion matrix for BPSVMt and BPSVMt-chance with shuffled labels. 

A. Accuracy and chance-level accuracy averaged over 5 folds. 

B. Loss and chance loss averaged over 5 folds. 

C. Confusion matrix for 6 behaviour labels 

D. Confusion matrix for 6 shuffled behaviour labels 
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The version of model that performs the best is highlighted in bold font in Table 4.10. 

Compared to executing the BPNNt on multiple videos, training only on one video 

resulted in the highest F1-score across all model configurations (0.56). The BPSVMt, 

when executed for predicting behaviour labels from one calcium imaging video, managed 

to achieve an F1-score of 0.41, which is comparatively lower than the BPNNt.  

 

Table 4.10 | Comparing the BPNNt and chance level evaluation metrics. 

Model Training Accuracy (%) Validation Accuracy (%) F1-score 

BPNNt 88.90 55.39 0.56 

BPNNt-Chance 71.08 28.42 0.27 

E.  

Table 4.11 | Comparing the BPSVMt and chance level evaluation metrics. 

 

 

 

 

4.4 BPNN Best Performing Configuration 

Table 4.10 depicts the best-performing model configuration of the BPNN, the BPNNt 

when trained with one calcium imaging video (Day 11). Fig. 4.13A, shows the confusion 

matrix of this model configuration and the F1-score per label. It can be observed from the 

figure that the BPNNt, under these training conditions, is able to predict with higher 

accuracy the movements Frozen (0.61) and Moving (0.71) from the rest of the labels 

(Grooming, Not Moving, Right Turn, and Left Turn) which have a significantly lower 

representation in the dataset as seen in Fig. 4.13B. Interestingly, the less-represented 

labels are still moderately predicted (for example, the Right Turn with a low 

representation of 4.3% out of all labels, achieves an F1-score of 0.48). In addition, the 

model seems to confuse the labels grooming and frozen. A biological explanation for this 

could be that these two behaviours are physically similar, potentially challenging the 

model to distinguish them (See Fig. 8.5 in the Appendix).  

 Continuing, Figure 4.14, depicts the precision, recall, and F1-score of each class 

label in comparison to chance-level performance. Especially for the left turn and right 

turn labels, the BPNN model performs many-fold times better than chance-level 

reflecting the interpretation that it is easier for the model to differentiate left from right 

turns. 

Model Accuracy (%) F1-score 

BPSVMt 42.94 0.41 

BPSVMt Chance 25.14 0.24 
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Figure 4.13 | Confusion matrix on the BPNNt when provided with one CI video as input with 6 behaviour labels.  

Note | A: This is the configuration of the BPNN that provides the best possible output out of all illustrated 

configurations. The confusion matrix allows us to visualise to what extent the model has been able to correctly predict 

mouse behaviour based on the provided data for validation. The F1-score per label has been added to demonstrate 

which behaviour classes the BPNNt is performing the best and for which ones the weakest.  

B: The label class distribution from the calcium imaging dataset of Animal 3 and the experimental session from Day 11 

is provided to give more context on how the percentage of each behaviour label (high or low representation) affects the 

performance (high or low F1-score) of the model.  

 

 

 
Figure 4.14 | Mean precision, recall, and F1-score per class label of the best performing model (BPNNt & BPNNt-

Chance). 

4.4.1 Assessing the Best Model Configuration on a Different Mouse  

To test the model's performance across animals, we used a calcium imaging dataset from 

a different experimental session involving Animal 2, which performed the same 

behavioural task. For the same learning day (Day 11) of the experiment, Animal 2 has the 

following behavioural distribution (Fig, 3.5, Right). Also, in the same Figure, the reader 
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can appreciate the differences in the behaviour distribution of both animals reflecting on 

the extent to which they perform the task correctly.  

When executing the BPNNt, under the same specifications as in Exp_4.1 (Table 

4.9), we found that the BPNN for Animal 2 underperforms compared to Animal. The 

training accuracy is 76.94, compared to 88.90, and the validation accuracy is 42.85, 

compared to 55.39 for Animal 3. 

 

 
Figure 4.15 | Accuracy (A) and Loss (B) for training and validation data averaged across 5 folds (BPNNt, 1 CI video, 

Animal 2). 

 

 
Figure 4.16 | Confusion matrix on the BPNNt when provided with one CI video as input from Animal 2 with 6 

behaviour label classifications. 
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5 Discussion 

The purpose of this thesis is to develop a new tool that utilizes convolutional neural 

networks to analyse calcium imaging recordings. We have called this tool, the BPNN 

(Behaviour Prediction Neural Network) which aims to establish correlations between 

animal behaviour and neural activity during experiments that investigate PD-related brain 

circuits, specifically the Basal Ganglia. For this study, Parkinson’s disease has been 

mentioned as a use case of a potential disease area where the BPNN tool could deliver 

potential impact by improving calcium imaging analysis and assisting the discovery 

process of potential disease biomarkers relevant for PD diagnosis or PD treatment.  

Most calcium imaging analysis techniques use machine learning algorithms to aid 

researchers interpret neural activity from animal behavioural experiments, either in freely 

moving assays or fixated experiments (50). However, these pipelines often require users 

to define several parameters to ensure high-quality and valid results. To the best of our 

knowledge, limited research has been pursued in inferring behaviour correlations directly 

from CI movies leading to a potential knowledge gap. We postulate that there is a lack of 

a simple CI analysis tool that can utilise the latest advancements in deep learning, namely 

CNNs, to predict animal behaviour without requiring researchers to understand complex 

pipelines and how to set their required parameters. Some of these parameters include 

motion artefact correction, baseline, and peak detection parameters for identifying 

fluorescence signals, and defining ROI for detecting neuronal activity (14,26,92).  

 To address this knowledge gap, the BPNN requires the user to provide the raw CI 

recording and the corresponding behaviour labels of the experimental session for which 

they wish conduct analysis. To revisit the research objectives mentioned in Sec. 1.3, in 

this thesis, we pre-process raw CI recordings acquired from a behavioural experiment 

(experiment details in Sec. 2.1.3.1) by developing a simple Sequential architecture 

commonly used in image classification tasks (118) and trained the model using high-

performance computational equipment available at the K. Meletis Group (see Table 8.4 

for hardware specifications). Continuing, we trained the model using different 

combinations of CI data configurations, such as multiple or individual CI recordings, and 

separated them into training and validation parts using the 5-Fold cross-validation train-

split method. We further optimised the CNN model by experimenting with different 

architectures such as VGG16 (122), including transfer learning approaches such as a 

ResNet 50 (123) and InceptionV3 (124) without noteworthy success. We also compared 

the performance of the BPNN with that of the BPSVM, an SVM-based model currently 

used in the K. Meletis Group for associating calcium traces with behaviour. To better 

articulate the results in relation to the defined aims and objectives, we outlay the research 

https://kise-my.sharepoint.com/personal/konstantinos_kalaitzidis_stud_ki_se/Documents/Arrow_Maze#_The_
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questions, as formulated in Sec. 1.4, and the extent to which they have been addressed in 

this study: 

 

1) To what extent is direct behaviour prediction in mice possible from in-vivo calcium 

imaging videos by omitting the step of calcium trace extraction and using deep learning 

methods such as CNNs? 

The BPNN model achieved moderate results in predicting mice behaviour from CI 

recordings; however, as indicated in Fig. 3.5, left, the BPNN is more successful in 

predicting the most represented behaviours of the input dataset such as Frozen (33.6% of 

all labels) and Moving (24.9% of all labels). In addition, Table 4.10 shows that the BPNN 

tool achieved the highest overall F1 score (0.56) when trained only on one CI recording. 

For the first series of model runs (Exp_1.1, Exp_1.2, and Exp_1.3 as shown in Table 4.1), 

only data from the 11th day of learning were utilised for training the BPNN model, as the 

mouse performed the task better than the previous days. Fig. 3.4 validates this 

observation by illustrating the behaviour label distribution during the experimental 

session. Most labels concern the main and left corridors as the mouse navigates the 

Arrow Maze from the Initiation Spout to Spout A, suggesting that it has learned the task. 

However, the BPNN tool showed signs of overfitting on the training data and poorly 

performing on the smaller validation dataset (See Fig. 4.1, 4.2, and 4.3).   

We tried to overcome the limitation by training the model with more CI training 

data. Specifically, we concatenated CI recordings from different experimental sessions of 

the same mouse across multiple days (see Table 4.3). However, we were surprised to find 

that this resulted in a decrease in the performance of the BPNN from an F1-score of 0.55 

to 0.44 when using more data (Table 4.4). As a result, training the model with more data 

does not improve its performance. In Sec. 4.4, we demonstrate that the best configuration 

of the BPNN produces an F1-score of 0.56, however, this score needs to be considered in 

accordance with two parameters: the F1-score per class label, and the percentage of 

instances per class label.  

When observing the results in Fig. 4.13, it can be concluded that the BPNN model 

can confidently predict, to a large extent, behaviours such as Frozen and Moving, which 

have the highest representation in the data and moderately predict labels such as left turn 

and right turn that even though are less represented in the dataset, still achieve a 

moderate F1-score.  

 

2) To what extent can we maximise the amount of neuronal information acquired from 

calcium imaging recordings to gain a better understanding of neural activity in brain 

circuits of interest? 
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Current CI analysis tools that employ CNNs (52,95) are focused on cell body 

identification in calcium imaging recordings. However, our approach takes advantage of 

all the pixels of the input frame with the aim of training the CNN model to identify 

neuronal activity from axonal and dendrite fluorescence. Exploiting the entire field of 

view from raw CI input may allow us to better understand the functional mechanisms in a 

circuit of interest such as the Basal Ganglia. As a result, the BPNN truly maximises the 

amount of neuronal information that can be utilised to train a CNN model and potentially 

arrive at behavioural correlations; however, further research is required for interpreting 

and validating this statement.  

 

5.1 Main Findings and Evaluation of Results 

A series of experiments are demonstrated in Chapter 4 to evaluate the performance of the 

BPNN. These experiments include comparisons among the BPNN, the BPSVM, and the 

chance-level output of each model. Both models were trained on the same input data 

configurations to ensure that the results were consistent and comparable. The input 

dataset was split into training and validation sets using the 5-Fold cross-validation 

method as described in Sec. 3.3.1 allowing us to acquire a more reliable estimate of the 

model’s results.  

The architecture utilised for the BPNN across all experiments has been the 

Sequential architecture as described in Sec. 3.3.2. For each experiment showcased in 

Chapter 4, we have provided tables of the execution specifications such as the kind of 

input data, the number of class labels, the data splitting method employed, as well as the 

number of videos included for training the CNN model. The evaluation metrics used 

across all experiments are Accuracy, Loss, F1-score, and confusion matrices.  

 Initially, in Sec. 4.1, we tested the BPNN on one CI recording with three different 

label configurations to identify which labels produce the most reliable results. We 

proceeded with the 6-behaviour label configuration that achieved an F1-score of 0.54 

compared to 0.55 of the 3-behaviour label configurations due to the former being able to 

predict more behaviours from the same calcium imaging dataset. However, as is clearly 

shown in Fig. 4.3, the BPNN overfits on the training data and performs poorly on the 

validation data. To address the overfitting problem, we trained the model with 3 

concatenated CI videos from different experimental sessions of the same animal. We 

tested its performance to account for any increase in the validation accuracy and the F1 

score. However, and to our surprise, the F1-score averaged lower (0.44) in this 

experiment (Table 4.4) compared to the first experiment (0.55) (Table 4.2), leading us to 

conclude that either the behaviour labels that correspond to specific neuronal activation 
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patterns differ across sessions or that that raw CI video of the different experimental 

sessions contains conflicting motion artefacts or other displacements as a result from the 

physical detachment and reattachment of the miniscope in the animal’s head. This can 

also be interpreted by the training accuracy curve depicted in  Fig. 4.4, showing the 

model struggling to learn from the training data compared to the previous experiment 1.3 

(Fig. 4.3), where the training curve increases more rapidly.   

Another approach was taken to minimise the potential of overfitting by adding the 

time dimension in the input shape of the dataset. This modification was introduced in the 

BPNN and adopted on the BPSVM for comparison reasons and is showcased in Sec. 

4.3.2. The reason for adopting this new approach was to capture the sequence of 

fluctuations in cell fluorescence present in the frames of the CI video. However, as 

illustrated in Tables 4.4 and 4.7, a moderate increase in the F1-score was only identified 

(from 0.44 to 0.46), which enhanced the suspicions that the overfitting issue cannot be 

addressed by increasing the size of the dataset by incorporating videos across different 

experimental sessions nor by including the time dimension in the input shape. Ultimately, 

the best results were yielded from using the time dimension only on one CI recording 

(see Sec. 4.3.2). 

It is particularly worth noting that the BPNN averaged higher results than the 

BPSVM in the same experiments (e.g., executions with one or multiple calcium videos 

and with the modification of adding the time dimension in the input shape). The most 

significant difference between the two models is demonstrated in Sec. 4.3.2, where the 

BPSVM averaged an F1-score of 0.41 and the BPNN an F1-score of 0.56, leaving room 

for interpretation that the BPNN can perform similarly well or slightly better from a 

support vector machine model under the same testing conditions. In a further comparison, 

we validated that both BPNN and BSVMS models perform better than their chance-level 

counterparts throughout the experiments presented in Sec. 4.2 and 4.3.  

Furthermore, we conducted Exp_4.1 with a different CI dataset from another 

animal to inspect performance across animals. In Fig. 3.5, we can see that Animal 2 has a 

lower representation of the moving behaviour state compared to Animal 3, resulting in a 

lower validation accuracy score of 42.85, compared to 55.39 in Animal 3. This indicates 

that the BPNN's success may depend on the mouse's behaviour; for example, if the mouse 

performs all types of behaviour on a similar frequency, then the dataset has a better 

representation distribution of the behaviour labels, potentially yielding better results. 

Overall, the CNN implementation struggles to achieve a high validation accuracy 

on unseen data samples resulting in low-performance metrics. Increasing the input data 

size from one calcium video to 3 negatively impacts the model’s performance. Adding 

the time dimension into the BPNN when training on multiple videos does not 
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substantially improve the performance (from 0.44 to 0.46) nor when training on a single 

video (from 0.55 to 0.56).  

5.2 The Novelty of the Thesis  

Several research groups have attempted to use the latest advancements in ML and DL to 

improve CI analysis workflows (52,101,126–128). While their implementations have 

focused on enhancing the calcium trace extraction process or using CNNs to identify cell 

bodies, this thesis takes an alternative approach to CI image analysis. We have achieved 

moderate performance by using CNNs to interpret the behaviour without conducting the 

calcium trace extraction step; however, more work is required to exhaust the potential of 

this method. Nonetheless, to the best of our knowledge, this is the first indication of a 

method that employs CNNs to analyse CI data to predict animal behaviour. Compared to 

the benchmark model, the BPSVM, the BPNN achieves similar or better results under the 

same testing conditions in all experimental runs, indicating that it can infer behaviour 

from CI recordings without performing calcium trace extraction. A second novel feature 

of this study is that the CNN model is trained to extract patterns from neuronal activity 

across the entire frame, including additional neuronal information that may be included in 

dendrites and axons. 

5.3 Limitations 

One limitation of this study is that the model's performance depends on the biological 

research question that defines the structure of the behavioural experiment. If the 

experiment results in the mouse performing behaviours of high variance (see Fig. 3.3), 

this imbalance in the class representation can cause the model to overfit the training data, 

making it challenging to accurately predict behaviour from the validation data. While 

data augmentation can help address overfitting in many ML problems, it's essential to 

avoid it in this case, as modifying the CI data in any way will result in a loss of biological 

relevance and information. 

  On a more technical level, when preparing the animal for a behavioural assay, 

researchers attach and detach the miniscope to the mouse's head before and after each 

session, respectively (as described in Sec. 2.1.3). However, the miniscope’s field of view 

may vary, which can, in turn, affect the BPNN's ability to extract patterns and features 

from the CI data. A process for aligning the field of view across different days has been 

applied to address this limitation. Despite this, differences in focus or brightness in the 

lens may still challenge the BPNN's ability to recognise the same field of view across 

sessions, potentially explaining the underperformance of the BPNN when concatenating 
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multiple videos together, as illustrated in Sec. 4.2. To address this; attempts were made to 

improve the model's performance, such as introducing more dropout layers to the 

Sequential architecture or using a Keras tuner to define the best architecture 

hyperparameters automatically (129). However, these approaches were unsuccessful, as 

the Keras tuner proposed the same architecture that was already in use. 

5.4 Future Research 

This study has moderately exhibited the ability of CNN models to be employed in image 

processing tasks such as recognising neuronal activation patterns in CI data and 

producing correlates with behavioural labels. However, there are possible directions that 

could deepen the investigation of CNN applicability in this task. For example, due to time 

limitations, this study hasn't elaborately explored applying a transfer learning approach in 

depth. Yet, a transfer learning approach could improve the model's ability to generalise 

on unseen data and increase performance. Another possible action point would be to use 

a different kind of CI training data, such as two-photon (2p) calcium imaging, where 

recording in greater depths is possible.  

Continuing Parkinson’s is a complex neurodegenerative disease of unknown cause, 

and using neural activity from populations of interest in the Basal Ganglia may be a 

daunting application for testing the BPNN’s efficacy. A future recommendation would be 

to utilise calcium imaging data from brain areas where neural activity related to 

behavioural output is more investigated. This may make it easier for the model to extract 

patterns and features and arrive at behavioural correlations.  
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6 Conclusions 

Neurodegenerative diseases, such as Parkinson's disease, affect millions of people 

globally and are the centre of focus in neuroscience research as no available drug can halt 

the degeneration of dopamine cells. To delve into the neural circuits relevant to 

Parkinson's disease, researchers employ behavioural assays to study the manifestation of 

disease symptoms in animal models. To image neural activity during these behavioural 

assays, calcium imaging, one of many neuroimaging techniques, allows us to study the 

activity of specific neuronal populations and their relation to behaviour during task 

engagement. However, calcium imaging techniques present several limitations that 

challenge researchers from effectively establishing behavioural correlations such as 

difficulty in demixing and acquiring spatially overlapping cells, low spatial resolution 

from the miniscope, and complex parameter set-up. To address these challenges, we 

explored minimising the burden of pre-processing CI videos by directly providing the 

raw CI recording to a CNN. In accordance with this aim, a series of calcium imaging 

datasets acquired from previously completed behavioural assays were repurposed, 

minimally pre-processed, and used as input to train the proposed CNN tool, the BPNN 

(Behaviour Prediction Neural Network). 

Furthermore, we developed an additional tool, the BPSVM (Behaviour Prediction 

Support Vector Machines), to compare and evaluate the BPNN's performance with state-

of-the-art methods. Multiple experiments were conducted to test the BPNN's ability to 

predict behaviour; however, we met challenges relating to overfitting. Adding more data 

to the model worsens the model's performance, which we hypothesise is the result of 

either technical inconsistencies as the result of the displacement of the miniscopes in the 

mouses head, or that the neural activity tunings to behaviour change between 

experimental sessions. However, as illustrated in Fig. 4.13, the best-performing model 

achieved an F1-Score of 0.56 and was able to produce behaviour correlates of the 

mouse's activity, such as "frozen" with an F1-score of 0.61 and "moving" with an F1-

score of 0.71, indicating that there is potential for CNNs to predict behaviour in animals 

during assays.  

All in all, utilising CNNs as an alternative method for analysing behaviour in 

animal assays is novel idea that to the best of our knowledge has not surfaced in the 

literature. However, the several technical challenges we encountered during the 

development of this tool mandates further research to establish the extent to which CNNs 

are applicable for predicting behaviour from calcium imaging recordings.  
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8 Appendices 

8.1 Examiner Response 

Examiner: (Recommendations for the author): 

Is it movement execution or movement ideation/initiation? Good to make this consistent. 

On some occasions, neurons fire directly when a movement is executed (e.g., a left turn). 

However, it has been observed that certain neuronal patterns fire before movement 

execution as well. As mentioned in Sec. 3.3.1, Step 2, the behaviour labels are temporally 

aligned with the calcium imaging frames. Consequently, the neuronal firing that is 

associated with each behaviour label is directly time dependent. The BPNN model 

considers the frame-label pairs when training and as a result, its predictions only take into 

consideration neuronal firing patterns that relate to direct movement manifestations 

observed in the Arrow Maze task. It is however interesting to explore in the future the 

extent to which this alternative implementation of calcium imaging analysis enriches our 

understanding of how neural activity relates to behaviour on an initiation-basis which 

would require the consideration of dynamic time-bound neurobehavioural associations. 

 

Explain what labels are you using for building your classifiers and make this very explicit 

when the results are presented. 

In Sec. 3.3.1, Step 2, we describe the 3 different label configurations reported in this 

study. In the captions of Figures 3.4 and 3.5, we have added descriptions for the Merged-

Spatial and Behaviour label configurations. For training the classifiers, we mention in 

page 41 that the Behaviour-type labels are used. In addition, Tables 4.3, 4.6, and 4.9 

specify the use of Behaviour-type labels for the corresponding training session.  

 

Your first research question only has one sub-question. You should either have at least 

two sub-questions or just merge them to a single question. 

In Sec. 1.4, we have merged the sub-question with the parent research question and have 

updated the text in the Discussion where the research questions are addressed. 

 

Providing the results on accuracy/f1-score on all labels together (as an average) when 

the dataset is imbalanced may be misleading. Even if the dataset is balanced this can also 

be misleading. Good to have the precision/recall per class label so that one can see for 

which classes the classifier is well-trained and for which ones it is weak. 

We have added Figures 4.13 and 4.14 to address this recommendation. Indeed, in Fig. 

4.13A, we can observe the F1-score per label. Fig. 4.13B, provides the context of the 
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label representation of the specific dataset (Animal3Learnday11). It can be concluded 

that the BPNN can perform moderate to confident predictions on the validation data for 

labels Frozen and Moving. In addition, given that for labels such as Left Turn and Right 

Turn, the number of instances is significantly lower (4.3% each compared to 33.6% and 

24.9% for Frozen and Moving labels respectively), the F1-scores of 0.48 and 0.40 can be 

remarked as promising.   

8.2 Extended Background 

 

 

 
Figure 8.1 | PD symptoms observed in patients. 

Note | Illustration by Sir William Richard Gowers, neurologist, researcher, and artist drawn in 1886 (130).  

 

 

8.2.1 Literature Review  

8.2.1.1 PICO Framework  

This thesis addresses the complexity of current calcium imaging analysis workflows. To 

investigate existing solutions in the field, the search terms “calcium imaging”, “calcium 

activity”, “calcium trace*”, and “calcium transient*” were selected. A potential path in 

alleviating the problem of complex pipelines in processing large-scale calcium imaging 

recordings is the application of deep learning techniques. The keywords “deep learning”, 

“convolutional neural network*”, and CNN* were selected. More keywords were 
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considered in the Comparison and Outcome PICO components; however, their inclusion 

was found to limit the range of found publications. Therefore, keywords generated from 

the Problem and Intervention components were chosen to ensure comprehensive 

coverage of relevant publications.  

  
 

Table 8.1 | The use of the PICO framework to generate keywords from research questions and form search blocks for 

searching literature on online databases. 

PICO 

Component  
Abstract component  Keyword(s) generated  

Problem  Complex calcium imaging analysis 

workflows  
“calcium imaging”, “calcium 

activity”, “calcium trace*”, “calcium 

transient*”  
  

Intervention  Use of Deep Learning advances such as 

CNNs to improve analysis  
“deep learning”, “convolutional 

neural network*”, CNN*  
Comparison  Performance comparison to current 

calcium imaging analysis methods  
compar*, optimi*, accuracy  

Outcome  Less complex, faster, less pre-processing 

steps, potentially more neural information 

related to PD  

neuroscience, neur*, “parkinson’s 

disease”, PD, parkinson*  

Note | Truncations and quotations have been added where necessary. The Asterix (*) symbol at the end of a keyword 

allows for multiple letter endings for that specific word, e.g., trace* can include the word “traces” in the search. 

Quotations (“”) are employed to search for multiple-word phrases such as “calcium imaging”, “deep learning”, etc. 

More information on truncations and quotations can be found on the KI Library website (link to an external website) 

(118).   

 

 
 

Table 8.2 | Total literature findings from database search 

Platform/Method  Search Block  Number 

of 

Records  

Link  

1. PubMed  ("calcium imaging" OR "calcium 

trace*") AND (deep learning 

[MeSH Terms] OR " convolutional 

neural networks" OR CNN)  

10  
  

(link to an external website)  

2. Web of Science  TS=("calcium imaging" OR 

"calcium trace*" OR "calcium 

transient*") AND (TS=(deep 

learning) OR TS=("convolutional 

neural networks") OR TS=(CNN))  

34  (link to an external website)  

3. IEEE Xplore  ("calcium imaging" AND ("deep 

learning" OR "convolutional neural 

networks" OR CNN))  

7  (link to an external website)  

https://kib.ki.se/en/search-evaluate/searching-information/search-techniques
https://pubmed.ncbi.nlm.nih.gov/?term=%28%22calcium+imaging%22+OR+%22calcium+trace*%22%29+AND+%28deep+learning+%5BMeSH+Terms%5D+OR+%22+convolutional+neural+networks%22+OR+CNN%29&filter=simsearch2.ffrft&filter=dates.2013%2F1%2F1-2023%2F2%2F28
https://www.webofscience.com/wos/woscc/summary/8ffdbbe9-97d3-4b75-8c65-4d56c5af4c73-7ba22874/relevance/1
https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&matchBoolean=true&queryText=((%22calcium%20imaging%22%20AND%20(%22deep%20learning%22%20OR%20%22convolutional%20neural%20networks%22%20OR%20CNN)))&highlight=true&matchPubs=true&returnFacets=ALL
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4. Manual search  *  32  -  

Total number of 

entries found after 

removal of 

duplicates  

-  73  -  

*Method 4 does not require a search block as publications were identified via manual search methods such as backward 

citation chaining.   
Note | The Number of retrieved records per database is the result of the search block applied and the use of filters (open 

access text or with access provided by the institution (Karolinska Institutet or Stockholm University), year of 

publication, and published in the English language). Links are provided to reproduce these findings. As this literature 

review was conducted in February 2023, more publications may be found. Findings from unstructured searches have 

also been included and displayed in the bottom row of the table.   

  

8.2.1.2 Selection of Findings   

 

 

 
 

Figure 8.2 | A PRISMA flow diagram representing the selection process of critical literature. 
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Note | More information on PRISMA flow diagrams can be found here: (link to an external website)  

 

1st Screening round:  

A two-step filtering process was conducted to categorize these findings based on 

their titles and abstract; the first step focused on identifying publications related to 

current calcium imaging analysis processes (classified as “non-deep learning methods”) 

while the second step focused on filtering findings relevant to deep learning 

implementations (classified as “deep learning methods”) in the context of behaviour 

prediction or cell segmentation from 1p or 2p calcium imaging recordings. A total 

number of 27 publications were identified in the first step and a total number of 13 were 

found in the second step of the screening process. The rest (25 findings) were excluded 

from the literature review.   

 

2nd Screening round:  

The second screening round was conducted on the remaining 40 publications where 

the focus was set on categorizing them according to article type (original article, methods 

article, conference paper, review article) and differentiating the articles into categories 

based on their content such as cell segmentation with DL (one-photon or two-photon), 

behaviour prediction (one photon or two photon), behaviour analysis with DL, and 

calcium imaging analysis pipelines. Finally, after the conclusion of the second screening 

process, a total of 14 publications were defined as critical literature based.  

 

 

Table 8.3 | Summary of selected publications for this study. 

Ref  Year  Area of interest  1p or 

2p?  
DL model  Behaviour Prediction from one 

photon calcium imaging?  
(71)  2022  Cell segmentation  2p  CNN  No  

(63)  2022  CI analysis  1p  No  No  

(62)  2021  Cell segmentation   1p  CNN, 

RNN  
No  

(61)  2020  Cell segmentation  2p  CNN  No  
  

(30)  2019  Cell segmentation  2p  CNN  No  

(59)  2019  Behaviour analysis  2p  CNN  No  

(60)  2019  Behaviour analysis  2p  CNN  No  

(66)  2019  CI analysis  Both  CNN  No  

(64)  2019  Cell segmentation  Both  No  No  

(68)  2018  CI analysis  1p  No  No  

(120)  2018  CI analysis  1p  No  No  

(121)  2016  CI analysis  Both  No  No  

Note | This list is sorted from newest to oldest publications.  
Abbreviations: 1p = one-photon, 1p = two-photon, CI = calcium imaging, CNN = Convolutional Neural Networks  

http://www.prisma-statement.org/PRISMAStatement/FlowDiagram
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8.3 Methods 

 
Figure 8.3 | The DSR Process (108)  

 

8.3.1.1 Experimental Setup  
 

Table 8.4 | Hardware specifications of computations resources employed for this study. 

Computer GPU CPU Memory OS 

2017 iMac Radeon Pro 8 

GB  

4,2 GHz Quad-

Core Intel Core 

i7 

32 GB macOS 

Ventura 

DMC Lab High-

performance 

Computer  

NVIDIA GeForce 

RTX 3090 

11th Gen Intel 

Core i9, 

3.50GHz x 16 

128 GB Ubuntu 

22.04.2 LTS  
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8.3.1.2 BPNN Model Architecture 
  

 
Figure 8.4 | An architectural visualisation of the basic version of the BPNN. 
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8.4 Results 

 

 
Figure 8.5 | Comparing behaviour labels Frozen (A) and Grooming (B). 

Note | In cases where the mouse is standing still, it may be challenging for the BPNN model to distinguish the two 

behaviours from each other in comparison to movements such as moving, left turn, right turn which are easier 

distinguished.  
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